Le Temps des Cerises: Efficient
Temporal Stack Safety on Capability
Machines using Directed Capabilities

Aina Linn Georges - Maj 2022

What is Stack Safety?

 The call stack is responsible for:
* Local variables
* Adheres to strict scope and lifetime rules

e Enforces that calls are well bracketed

* A family of stack safety properties

Formalizing Stack Safety as a Security Property

Anderson et. al.

A Family of Stack Safety Properties

* | ocal state encapsulation
* |ocal variables/stack objects — stack allocated
* | ocal state of a closure — heap allocated

* Well-bracketed control flow

 [femporal stack safety

e No use after free of stack allocated data

Stack Safety Properties

As stack frame discipline

Stack Safety Properties

As stack frame discipline

Stack Safety Properties

As stack frame discipline

Stack Safety Properties

As stack frame discipline

Stack Safety Properties

As stack frame discipline

LSE

Stack Safety Properties

As stack frame discipline

LSE

Stack Safety Properties

As stack frame discipline

LSE

WBCF

Stack Safety Properties

As stack frame discipline

LSE

WBCF

Stack Safety Properties

As stack frame discipline

LSE

WBCF Temporal

Enforcing Stack Safety using
Capabilities

Background

Local Capabilities [2018] Reasoning about a Machine with Local Capabilities
Skorstengaard et. al.

Linear Capabilities [2019] Enforcing Well-Bracketed Control Flow and Local State Encapsulation
using Linear Capabilities
Skorstengaard et. al.

Uninitialized Capabilities [2021] Efficient and Provable Local Capability Revocation using Uninitialized
Capabilities
Georges et. al.

Tem poral Capabilities [2019] Temporal Safety for Stack Allocated Memory on Capability Machines
Tsampas et. al.

Throughline

A safe stack enforces specific spatial and temporal properties to stack allocated
memory

The authority granted by a stack capability must follow these exact properties,
iIncluding the lifetime properties of stack frames

This requires some kind of “capability revocation” mechanism

Throughline

A safe stack enforces specific spatial and temporal properties to stack allocated
memory

The authority granted by a stack capability must follow these exact properties,
iIncluding the lifetime properties of stack frames

This requires some kind of “capability revocation” mechanism

... efficiently!

Capabilities for the heap and for
the stack

Pointers as Capabilities

Pointers are replaced by hardware capabilities

Pointers as Capabilities

Pointers are replaced by hardware capabilities

b e

* Bounds of authority

Pointers as Capabilities

Pointers are replaced by hardware capabilities

b e

(RO,b,e)

* Bounds of authority

e Permission: RO/RW/etc

Pointers as Capabilities

Pointers are replaced by hardware capabilities

(RO,b,e,a)

* Bounds of authority
 Permission: RO/RW/etc

e Address

Pointers as Capabilities

Pointers are replaced by hardware capabilities

a b e

(RO,b,e,a)

* Bounds of authority
 Permission: RO/RW/etc

e Address

A Lattice of Permissions

RWLX

/ \ Global

RWL RWX

\ / \ Local
The stack is a capability with permission RWLX /

A Lattice of Permissions

Can be stored in heap and stack

AN N

RWL RWX

\ / \ Local
The stack is a capability with permission RWLX /

A Lattice of Permissions

Can be stored in heap and stack

AN N

RWL RWX

\ / \ Local
The stack is a capability with permission RWLX / Can only be stored on the stack

Capability Revocation

Calling Convention: Before Calling an Adversary

e

(RWLX,Local,b,e,a)

Calling Convention: Before Calling an Adversary

e

e Create an activation record that
can:

(RWLX,Local,b,e,a)

Calling Convention: Before Calling an Adversary

e
e Create an activation record that
can:
* Reinstate the old stack pointer
(RWLX,Local,b,e,a)
a

Calling Convention: Before Calling an Adversary

e
* Create an activation record that
can:
* Reinstate the old stack pointer
 Update PC to the next
RWLX.Local.b,6.a) Instruction In program
a

Calling Convention: Before Calling an Adversary

e Create an activation record that
can:

* Reinstate the old stack pointer

 Update PC to the next
instruction in program

(RWLX,Local,b,e,a)

Calling Convention: Before Calling an Adversary

e Create an activation record that
can:

* Reinstate the old stack pointer

 Update PC to the next
instruction in program

e Activation record is stored on the
stack

(RWLX,Local,b,e,a)

Calling Convention: Before Calling an Adversary

e Create an activation record that
can:

* Reinstate the old stack pointer

(RWLX,Local,a,e,a) Update PC to the next
instruction in program

e Activation record is stored on the
stack

(RWLX,Local,b,e,a)

Calling Convention: Before Calling an Adversary

e Create an activation record that
can:

* Reinstate the old stack pointer

(RWLX,Local,a,e,a) Update PC to the next
instruction in program

e Activation record is stored on the
stack

(RWLX,Local,b,e,a)
(E,Local,b,e,-)

Motivating Revocation

e

(RWLX,Local,b,e,-)

Motivating Revocation

e

(RWLX,Local,b,e,-)

Motivating Revocation

e

Motivating Revocation

e

(RWLX,Local,a,e,-)

Motivating Revocation

e

(RWLX,Local,a,e,-)

Motivating Revocation

e

(RWLX,Local,a,e,-)

(RWLX,Local,a,e,-)

Motivating Revocation

e

(RWLX,Local,a,e,-)

Motivating Revocation

e

(RWLX,Local,b,e,-)

(RWLX,Local,a,e,-)

Motivating Revocation

e

(RWLX,Local,b,e,-)

(RWLX,Local,a,e,-)

Motivating Revocation

e

(RWLX,Local,a,e,-)

Motivating Revocation

e

(RWLX,Local,a’,e,-)

(RWLX,Local,a,e,-)

Capability Revocation: Callee

Uninitialized capabilities

© A capability with permission U,
range [b,e) and address a grants:
» authority 1t for the range [b,a)
* no authority over [a+1,e)
(URWLX,Local,b,e,a) * write only authority over a
a

Its address a is incremented once
written to

A Revisited Lattice of Permissions
RWLX

/N

RWL RWX

NN e
AN
I/

A Revisited Lattice of Permissions
RWLX

AN

RWL URWLX RWX

N AN

URWL URWX

S INOAT
N4

Capability Revocation: Caller

Disallow dangling stack pointers

* A dangling stack pointer is a capability that points to a “younger” stack frame
(remember, in our stack higher means younger)

* Take advantage of the implicit lifetime information of on-stack capability
addresses

 Higher address = younger stack

* Older stack capabilities cannot store younger stack capabilities

Directed Capabilities

Disallow dangling stack pointers

(URWLX, ..., a)

Directed Capabilities

Disallow dangling stack pointers

(URWLX, ..., a)

(RW, Directed, b, e, a’)

Directed Capabilities

Disallow dangling stack pointers

(URWLX, ..., a)

(RW, Directed, b, e, a’)

Directed Capabilities

Disallow dangling stack pointers

(URWLX, ..., a)

(RW, Directed, b, e, a’)

Directed Capabilities

Disallow dangling stack pointers

e One additional
locality bit

 One more dynamic
arithmetic check

(URWLX, ..., a)

(RW, Directed, b, e, a’)

A Re-Revisited Lattice of Permissions
RWLX

AN

RWL URWLX RWX

N AN

URWL URWX

S INOAT
N4

A Re-Revisited Lattice of Permissions
RWLX

AN

RWL URWLX RWX

N AN

URWL URWX

SINOAT L
N4

Secure Calling Convention

When called by an adversary

Secure Calling Convention

When called by an adversary

(URWLX,Directed,b,e,b + [params| +1)

Secure Calling Convention

When called by an adversary

(URWLX,Directed,b,e,b + [params| +1)

params

Secure Calling Convention

When called by an adversary

(URWLX,Directed,b,e,b + [params| +1)

params

Secure Calling Convention

Before calling an adversary

Secure Calling Convention

Before calling an adversary

activation
record

Secure Calling Convention

Before calling an adversary

(E, Directed, ...)

activation
record

Secure Calling Convention

Before calling an adversary

params

(E, Directed, ...)

activation
record

Secure Calling Convention

Before calling an adversary

params

(E, Directed, ...)

activation
record

Secure Calling Convention

Before returning to an adversary

Secure Calling Convention

Before returning to an adversary

Clear all general purpose registers

How can we trust that this
works?

Summary of the Mechanized Verification

using the calling convention

* Unary logical relation /

 Used to prove the robust safety of examples that interact with unknown
code (Awkward example, dangling stack pointer example, stack object
example)

* Binary logical relation

 Used to prove the contextual equivalence of examples that interact with
unknown code

* Full-abstraction against an overlay semantics (proved in Coq)

Summary of the Mechanized Verification

using the calling convention

* Unary logical relation (

 Used to prove the robust safety of examples that interact with unknown
code (Awkward example, dangling stack pointer example, stack object
example)

* Binary logical relation

 Used to prove the contextual equivalence of examples that interact with
unknown code

* Full-abstraction against an overlay semantics (proved in Coq)

Dangling Stack Pointer Example

g1: malloc 1 r2
store r2 2

f1: prepstack r_stk
loadU r0O r_stk -1
push r_env
load r_env r_env
assertr_env 2
rclear RegName\{PC,r0}
jmp r0

Dangling Stack Pointer Example

g1: malloc 1 r2
store r2 2
closure creation around

r2 and f1

f1: prepstack r_stk
loadU rO r_stk -1
push r_env
load r_env r_env
assertr_env 2
_rclear RegName\{PC,r0; prepare the stack: check its size, check that the
jmp rO parameters can be read,...

Dangling Stack Pointer Example

g1: malloc 1 r2
store r2 2

f1: prepstack r_stk
loadU rO r_stk -1
push r_env
load r_env r_env
assertr_env 2
rclear RegName\{PC,r0}
jmp r0

load the return pointer provided by caller

Dangling Stack Pointer Example

g1: malloc 1 r2
store r2 2

purposefully try to leak the enclosed local state

f1: prepstack r_stk
loadU rO r_stk -1
push r_env
load r_env r_env
assert r_env 2
rclear RegName\{PC,r0}
jmp r0

Dangling Stack Pointer Example

g1: malloc 1 r2
store r2 2
closure creation around

r2 and f1

f1: prepstack r_stk load the enclosed local state and assert it is still 2

loadU rO r_stk -1

push r_env

load r _ env r_env

assertr env 2

rclear RegName\{PC,r0}

jmp r0

Dangling Stack Pointer Example

g1: malloc 1 r2
store r2 2
closure creation around

r2 and f1

f1: prepstack r_stk
loadU r0O r_stk -1
push r_env
load r_env r_env
assertr_env 2
rclear RegName\{PC,r0}

jmp r0

apply the calling convention: clear registers and
return

A Program Logic to Reason about Known Code

\ (\

" pc — (RX,GLOBAL, b, e, b) SC s

x |b,e) = fi £ ting | L
* Tyt — (URWLX, DIRECTED, bstk, estk, astk) XECULng) Istk |

SO ; \ 1

f1: prepstack r_stk
loadU r0O r_stk -1
push r_env

load r_envr_env
assertr _env 2
rclear RegName\{PC,r0}

jmp r0

(E, Global, ...)

Defining “safe to share”

V(w) wis safe to share

< (w) Ww IS safe to execute

FTLR : V(w) — £(w)

f1: prepstack r_stk
loadU r0O r_stk -1
push r_env

load r_envr_env
assertr _env 2
rclear RegName\{PC,r0}

imp rO
mp (E, Global , ...)

Unary Logical Relation - a Simplified Attempt

Defining “safe to execute” and “safe to share”

Unary Logical Relation - a Simplified Attempt

Defining “safe to execute” and “safe to share”

E(w) = Vreg, {pc— w * [r1,...,r31] — reg x R(reg) * - --} Executable {- -}

Unary Logical Relation - a Simplified Attempt

Defining “safe to execute” and “safe to share”

E(w) = Vreg, {pc— w * [r1,...,r31] — reg x R(reg) * - --} Executable {- -}
R(reg) = V(regl0]) * - - - * V(reg[30])

Unary Logical Relation - a Simplified Attempt

Defining “safe to execute” and “safe to share”

E(w) = Vreg, {pc— w * [r1,...,r31] — reg x R(reg) * - --} Executable {- -}
R(reg) = V(regl0]) * - - - * V(reg[30])

A

V(E, GLOBAL, - - -) >E(RX, GLOBAL, - - -)

Unary Logical Relation - a Simplified Attempt

Defining “safe to execute” and “safe to share”

E(w) = Vreg, {pc— w * [r1,...,r31] — reg x R(reg) * - --} Executable {- -}
R(reg) = V(regl0]) * - - - * V(reg[30])

A

V(E, GLOBAL, - - -) >E(RX, GLOBAL, - - -)

V(z),V(0,—,—, —, —) =T

Unary Logical Relation - a Simplified Attempt

Defining “safe to execute” and “safe to share”

E(w) = Vreg, {pc— w * [r1,...,r31] — reg x R(reg) * - --} Executable {- -}
R(reg) = V(reg|0]) * - - - x V(reg[30])

A

V(E, GLOBAL, - - -) >E(RX, GLOBAL, - - -)

V(z),V(0,—,—, —, —) =T

V(RWX, GLOBAL, b, e, —) = Kacip.e) 3W; a = w x V(w)

Unary Logical Relation - a Simplified Attempt

Defining “safe to execute” and “safe to share”

E(w) = Vreg, {pc— w * [r1,...,r31] — reg x R(reg) * - --} Executable {- -}
R(reg) = V(reg|0]) * - - - x V(reg[30])

A

V(E, GLOBAL, - - -)

>E(RX, GLOBAL, - - -)

V(z),V(0,—,—, —, —) =T

N.a
V(RWX, GLOBAL, b, e, —) = Kacip.e) 3W; a = w x V(w)

No formal distinction between global and directed capabilities

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

Permanent

Once shared, a heap capability can
always be used

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

Ownership of a stack frame lasts
for the duration of the current call

Once shared, a heap capability can
always be used

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

A stack frame can be: Ownership of a stack frame lasts
for the duration of the current call

Once shared, a heap capability can
always be used

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

A stack frame can be: Ownership of a stack frame lasts

| for the duration of the current call
* Live

Once shared, a heap capability can
always be used

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

A stack frame can be: Ownership of a stack frame lasts

| for the duration of the current call
* Live

* Dead/popped Once shared, a heap capability can
always be used

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

A stack frame can be: Ownership of a stack frame lasts

| for the duration of the current call
* Live

* Dead/popped Once shared, a heap capability can

always be used
* Frozen

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

A stack frame can be: Ownership of a stack frame lasts

| for the duration of the current call
* Live

* Dead/popped Once shared, a heap capability can

always be used
* Frozen

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

A stack frame can be: Ownership of a stack frame lasts

| for the duration of the current call
* Live

* Dead/popped Once shared, a heap capability can

always be used
* Frozen

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

A stack frame can be: Ownership of a stack frame lasts

_ for the duration of the current call
e Live

* Dead/popped Once shared, a heap capability can

always be used
* Frozen

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

A stack frame can be: Ownership of a stack frame lasts

| for the duration of the current call
* Live

* Dead/popped Once shared, a heap capability can

always be used
* Frozen

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

A stack frame can be: Ownership of a stack frame lasts

| for the duration of the current call
* Live

* Dead/popped Once shared, a heap capability can

always be used
* Frozen

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

A stack frame can be: Ownership of a stack frame lasts

| for the duration of the current call
* Live

* Dead/popped Once shared, a heap capability can

always be used
* Frozen

Modelling Lifetime Behaviour of Stack and Heap

What different states can the stack and heap be in?

A stack frame can be: Ownership of a stack frame lasts

| for the duration of the current call
* Live

* Dead/popped Once shared, a heap capability can

always be used
e Frozen standard states

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

Uninitialized(w)

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

—— > observable by all

Uninitialized(w)

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

—— > observable by all

----------- » observable by currently executing function

Uninitialized(w)

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

—— > observable by all

----------- » observable by currently executing function

—» observable by lower stack frames

Uninitialized(w)

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

—— > observable by all

----------- » observable by currently executing function

—» observable by lower stack frames

Uninitialized(w)

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

—— > observable by all

----------- » observable by currently executing function

—» observable by lower stack frames

Uninitialized(w)

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

—— > observable by all

----------- » observable by currently executing function

—» observable by lower stack frames

Frozen(m) [*7" -
Temporary [--------------- Permanent

Uninitialized(w)

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

—— > observable by all

----------- » observable by currently executing function

—» observable by lower stack frames

---------------- Permanent

i}

Uninitialized(w)

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

—— > observable by all

----------- » observable by currently executing function

—» observable by lower stack frames

Frozen(m) [*7" -
Temporary [--------------- Permanent

Uninitialized(w)

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

—— > observable by all

----------- » observable by currently executing function

—» observable by lower stack frames

Frozen(m) |77 -
~—> Temporary """""""""" Permanent

Uninitialized(w)

Modelling Lifetime Behaviour of Stack and Heap

Which transitions are safe to observe by the caller, and by the callee?

—— > observable by all

----------- » observable by currently executing function

—» observable by lower stack frames

Frozen(m) |77 -
~—> Temporary """""""""" Permanent

Uninitialized(w)

standard state transition system

Modelling Lifetime Behaviour of Stack and Heap

Frozen(m) [-
B Temporary """""""""" Permanent

Uninitialized(w)

standard state transition system

Modelling Lifetime Behaviour of Stack and Heap

[Frozen(m)

/{ Temporary } ---------------- >[Permanent]

[Uninitialized(w)]

standard state transition system

Modelling Lifetime Behaviour of Stack and Heap

[Frozen(m)

/{ Temporary } ---------------- >[Permanent]

[Uninitialized(w)]

standard state transition system

+ public future world relation —]Pub

Modelling Lifetime Behaviour of Stack and Heap

[Frozen(m)

/{ Temporary } ---------------- >[Permanent }

[Uninitialized(w) }

standard state transition system

+ public future world relation —]Pub

+ private future world relation _1¥"*Y

Modelling Lifetime Behaviour of Stack and Heap

[Frozen(m)

/{ Temporary } ---------------- >[Permanent }

[Uninitialized(w) }

standard state transition system

+ public future world relation —]Pub

 private future world relation gp v

a

* relative future world relation _|

A Kripke World

Y : WORLD — Word — iProp
& : WORLD — Word — iProp

Where a WORLD is a map from addresses to standard states

A Kripke World

Y : WORLD — Word — iProp
& : WORLD — Word — 7Prop

Where a WORLD is a map from addresses to standard states

We will need to satisfy the following monotonicity requirements:

A Kripke World

Y : WORLD — Word — iProp
& : WORLD — Word — 7Prop

Where a WORLD is a map from addresses to standard states

We will need to satisfy the following monotonicity requirements:

e For uninitialized capabilities: W’ 2 W — V(W)(p, g,b,e,a) —x V(W')(p, g, b, e, a)

A Kripke World

Y : WORLD — Word — iProp
E : WORLD — Word — 7Prop

Where a WORLD is a map from addresses to standard states

We will need to satisfy the following monotonicity requirements:

e For uninitialized capabilities: W’ 2 W — V(W)(p, g,b,e,a) —x V(W')(p, g, b, e, a)

* For non uninitialized capabilities:W’' 3¢ W — V(W)(p, g,b,e,a) — V(W')(p, g,b, e, a)

A Kripke World

Y : WORLD — Word — iProp
& : WORLD — Word — 7Prop

Where a WORLD is a map from addresses to standard states

We will need to satisfy the following monotonicity requirements:

e For uninitialized capabilities: W’ 2 W — V(W)(p, g,b,e,a) —x V(W')(p, g, b, e, a)

* For non uninitialized capabilities:W’' 3¢ W — V(W)(p, g,b,e,a) — V(W')(p, g,b, e, a)

* For Global capabilities: W' 27 W — V(W)(p, GLOBAL, b, e,a) — V(W')(p, GLOBAL, b, e, a)

Back to the Unary Logical Relation

V(W) (E, DIRECTED, b, e, a) = VW' 3¢ W,>&(W')(RX, DIRECTED, b, e, a)

V(W)(E, GLOBAL, b,e,a) = OVW' 2P™ W,>&(W')(RX, GLOBAL, b, e, a)

Back to the Unary Logical Relation

V(W) (E, DIRECTED, b, e, a) = VW' 3¢ W,>&(W')(RX, DIRECTED, b, e, a)

V(W)(E, GLOBAL, b,e,a) = OVW' 2P™ W,>&(W')(RX, GLOBAL, b, e, a)

V(W) (RWLX, DIRECTED, b, e, —) = >l< rel(a,)) « W(a) = Temporary

a€|b,e)

Back to the Unary Logical Relation

[|>

VW' 3¢ W, E(W')(RX, DIRECTED, b, €, a)

V(W)(E, DIRECTED, b, e, a)

[|>

YW’ 2P W, E(W')(RX, GLOBAL, b, e, a)

V(W)(E, GLOBAL, b, e, a)

V(W) (RWLX, DIRECTED, b, e, —) = * rel(a,)) « W(a) = Temporary

a€|b,e)

EW)(w) = Vrey.
{-++ % stsCollection(W) x sharedResources(W)}
Executable

{ % IW' 3P W, stsCollection(W") x sharedResources(W')}

Standard Resources

Standard Resources

MonoReq(W, ¢,v,3) = OVW' W' IW — ¢(W,v) — (W', v)

Standard Resources

MonoReq(W, ¢,v,J) = YW W' Z

W — (W, v) —x ¢(W', v)

perm R(CL, W’ ¢) L E’U, ar— v xPb ¢(W, U) 23 I\/I()nORe(ZI(I/I/7 ¢, v, _p’l“iv)

Standard Resources

MonoReq(W, ¢,v,J) = YW W' Z

W — (W, v) —x ¢(W', v)

perm R(a) W’ ¢) L E’U, ar— v xPb ¢(W, U) 23 I\/I()nORe(ZI(I/I/7 ¢, v, _pTiv)

tempR(a, W,¢) = Fv,a > vx*>d(W,v)* MonoReq(W, ¢, v, 1)

Standard Resources

MonoReq(W, ¢,v,3) = OVW' W' IW — ¢(W,v) — (W', v)

permR(a, W, ¢)
tempR(a, W, ¢)

uninitR(a, v)

A

L

ey

E”U, ar— v xDH ¢(W, U) X MOHORGQ(Wa ¢7 U, _pfr’iv)

E”U, a +—> U *k [>¢(W, U) K I\/IonoReq(W, ¢7 U, ;a)

ar— v

Standard Resources

MonoReq(W, ¢,v,J) = YW W' Z

W — (W, v) —x ¢(W', v)

perm R(a) W’ ¢) L E’U, ar— vV xDPb ¢(I/I/v7 U) 23 I\/I(:)nOReq(I/I/7 ¢, v, _pTiv)

tempR(a, W,¢) = Fv,a > vx*>d(W,v)* MonoReq(W, ¢, v, 1)

ey

uninitR(a, v) a— v

frozenR(a,m) = a+ m(a)*Va' € dom(m), W (a') = Frozen(m)

Standard Resources

MonoReq(W, ¢,v,J) = YW W' Z

W — (W, v) —x ¢(W', v)

A

perm R(a) W’ ¢) — E’U, ar— vV xDPb ¢(I/I/v7 U) 23 I\/I(:)nOReq(I/I/7 ¢, v, ;p”l”iv)

tempR(a, W, ¢) = Fv,ar vx*>¢(W,v)* MonoReq(W, ¢, v, 1)

ey

uninitR(a, v) a— v

frozenR(a,m) = a+ m(a)*Va' € dom(m), W (a') = Frozen(m)

Returning to our Example

f1: prepstack r_stk
loadU r0O r_stk -1
push r_env

load r envr _env
assertr env 2
rclear RegName\{PC,r0}

jmp rO

b + 1

Returning to our Example

f1: prepstack r_stk
loadU r0O r_stk -1
push r_env

load r envr _env
assertr env 2
rclear RegName\{PC,r0}

jmp rO

We begin with:

stsCollection(W)
sharedResources(W)

b + 1

Returning to our Example

f1: prepstack r_stk Context:

loadU r0O r_stk -1
oush r_env V(W) (URWLX, DIRECTED, b, e, b + 1)

load r envr _env

assertr_env 2
rclear RegName\{PC,r0}

jmp rO

We begin with:

stsCollection(W)
sharedResources(W)

b + 1

Returning to our Example

f1: prepstack r_stk Context:

loadU r0O r_stk -1
oush r_env V(W) (URWLX, DIRECTED, b, e, b + 1)

load r envr _env

assertr_env 2
rclear RegName\{PC,r0}

jmp rO

We begin with:

stsCollection(W)
sharedResources(W)

b + 1

Returning to our Example

f1: prepstack r_stk Context:

loadU r0O r_stk -1
oush r_env V(W) (URWLX, DIRECTED, b, e, b + 1)

load r envr _env

assertr_env 2
rclear RegName\{PC,r0}

jmp rO

We begin with:

stsCollection(W)
sharedResources(W)

b + 1

Returning to our Example

Context:

f1: prepstack r_stk
loadU r0O r_stk -1
push r_env

V(W) (URWLX, DIRECTED, b, e, b + 1)

|
;)Sascérr{re_nevn:/_gnv V(W) (retv) * MonoReq(W, V, retv, J b)

rclear RegName\{PC,r0}
jmp rO

We begin with:

stsCollection(W)
sharedResources(W')

b+ 1
retv b

Returning to our Example

Context:

f1: prepstack r_stk
loadU r0O r_stk -1
push r_env

V(W) (URWLX, DIRECTED, b, e, b + 1)

|
;)Sascérr{re_nevn:/_gnv V(W) (retv) * MonoReq(W, V, retv, J b)

rclear RegName\{PC,r0}
jmp rO

We begin with:

stsCollection(W)
sharedResources(W')

b + 1

Returning to our Example

Context:

f1: prepstack r_stk
loadU r0O r_stk -1
push r_env

V(W) (URWLX, DIRECTED, b, e, b + 1)

|
;)Sascérr{re_nevn:/_gnv V(W) (retv) * MonoReq(W, V, retv, J b)

rclear RegName\{PC,r0}
jmp rO

We begin with:

stsCollection(W)
sharedResources(W)

We end with:

stsCollection([b + 1 := Uninitialized(RWX, - - -)|W)
sharedResources(|b + 1 := Uninitialized(RWX, - - -)|WW)

b + 1

Returning to our Example

Context:

f1: prepstack r_stk
loadU r0O r_stk -1
push r_env

V(W) (URWLX, DIRECTED, b, e, b + 1)

|
;)Sascérr{re_nevn:/_gnv V(W) (retv) * MonoReq(W, V, retv, J b)

rclear RegName\{PC,r0}
jmp rO

Need to establish:
V([b+ 1 := Uninitialized(RWX, - - -)|W)(retv)

We begin with:

stsCollection(W)
sharedResources(W')

We end with:

stsCollection([b + 1 := Uninitialized(RWX, - - -)|W)
sharedResources(|b + 1 := Uninitialized(RWX, - - -)|WW)

b + 1

Conclusion

Summary of the Mechanized Verification

* Unary logical relation

 Parametrized by a Kripke world to distinguish between valid heap and valid
stack capabillities

* A new kind of temporal transition to changes that may be safely observed
only by the relative callers

: : — 1A
* A relative future world relation —

Final Remarks

Are directed capabilities feasible?

* Uninitialized directed capabilities require only two additional bits

 CHERI concentrate [Woodruff et. al. 2019] employs a rigorous
compression scheme that reserves 2 and 7 bits in the CHERI-64 and
CHERI-128 compression formats

 The semantics of load(U), store(U) and lea require additional bounds checks,
however these bounds checks are in the same style as existing ones, and the
same optimisation patters ought to apply

* The calling convention uses no stack clearing at all!

Thank you!

Final Remarks - Metrics

* |n total: around 60,000 LOC, where 10,000 are for the overlay semantics and
FA proof, and 14,000 is the binary model

 Around 1.5 to 2 hours to compile

 There is room for improvement!
* Alternatives to carrying around the Kripke World

* Using the new SSWP to get single atomic steps for the program logic

Modelling Lifetime Behaviour of Stack and Heap
Example

Modelling Lifetime Behaviour of Stack and Heap
Example

 An uninitialized stack, with
temporary parameters at the
bottom

Modelling Lifetime Behaviour of Stack and Heap
Example

 An uninitialized stack, with
temporary parameters at the
bottom

* \We claim ownership of the stack
and change the state of our stack
frame

Modelling Lifetime Behaviour of Stack and Heap
Example

 An uninitialized stack, with

temporary parameters at the
bottom

 We claim ownership of the stack

and change the state of our stack
frame

e We freeze the lower stack frame
and call a new callee ----------- >

Modelling Lifetime Behaviour of Stack and Heap
Example

 An uninitialized stack, with

temporary parameters at the
bottom

* \We claim ownership of the stack
and change the state of our stack
frame

e We freeze the lower stack frame
and call a new callee ----------- >

 Upon return: we “thaw” the frozen
frame, and pop it

Modelling Lifetime Behaviour of Stack and Heap
Example

 An uninitialized stack, with

temporary parameters at the
bottom

* \We claim ownership of the stack
and change the state of our stack
frame

e We freeze the lower stack frame
and call a new callee ----------- >

 Upon return: we “thaw” the frozen
frame, and pop it

Modelling Lifetime Behaviour of Stack and Heap

Example
 An uninitialized stack, with
temporary parameters at the
bottom
* \We claim ownership of the stack
—a and change the state of our stack

frame

e We freeze the lower stack frame
and call a new callee ----------- >

 Upon return: we “thaw” the frozen
frame, and pop it

The Instrumented Machine State

Standard resources

%0 | empony w0 [h] e
Gninitialized(e b

Standard map Interpretation map

» stsCollection(W) : the authoritative view of the standard map

» sharedResources(W) : the authoritative view of the interpretation map, AND the standard
resource for each address in the map, according to its standard state

* rel(a,®) : the fragmental view of the association between a and © in the interpretation map

Back to the Logical Relation

Associating memory invariants with a standard state

w o,a — w x state o x P(o, w)

V(RWLX, DIRECTED, b, e, —) = >l< 3P,

x> Vo w, P(o,w) —* o = Temporary x V(w)

Back to the Logical Relation

Associating memory invariants with a standard state

N .a
V(RWLX, DIRECTED, b, e, —) = >l< dP, 3w o,a — w * state o * P(o, w)

x> Vo w, P(o,w) —* o = Temporary x V(w)

ey

>E(RX, GLOBAL, - - -)

V(E, GLOBAL, - - -)

= > &(RX, DIRECTED, - - -)

V(E, DIRECTED, - - -)

Back to the Logical Relation

Associating memory invariants with a standard state

w o,a — w x state o x P(o, w)

V(RWLX, DIRECTED, b, e, —) = >l< 1P,
a€|b,e)

x> Vo w, P(o,w) —* o = Temporary x V(w)

ey

>E&(RX, GLOBAL, - - -)

V(E, GLOBAL, - - -)

A

>E&(RX, DIRECTED, - - -)

V(E, DIRECTED, - - -)

How to distinguish between the two?

