
LOCAL STATES
More hidden states, more modalities,

and generalized invariants and ghost ownership

Hai Dang, Gregory Malecha, David Swasey

2nd Iris Workshop, May 2022,
Radboud University Nijmegen, The Netherlands

Local states?

2 The Future is Built on

Usually, l ↦ v means the same everywhere

But everyone has secrets!

Alice Bob Charles

l ↦ 💛 l ↦ 🗡 l ↦ 🏵

differently depending
on one’s local states!

Interpretation depends on local states

3 The Future is Built on

● not uncommon

○ in weak memory

○ in distributed systems

○ in virtual address spaces

l ↦ v depends on
○ local caches

○ local node states

○ local page tables

Alice Bob Charles

l ↦{A} v :≈
l ↦ 💛

l ↦{B} v :≈ l
↦ 🗡

l ↦{C} v :≈
l ↦ 🏵

● a solution: indexing resources by the local state l ↦{s} v

Indexing resources by local state: P s

4 The Future is Built on

● but not everything depends on some local states—local states
should be ambient

○ hide local states with Iris’ monPred

○ only work with local states explicitly when needed

■ using modalities, inspired by Iris-based weak-mem works

● benefits:
○ cleaner for things that don’t care about local states
○ more idiomatic reasoning with explicit local states

examples coming in a moment …

But what about composing local states?

5 The Future is Built on

weak-mem virtual address ???

● how to compose a logic that knows about weak-mem and a logic
that knows about virtual address?

● open world problem, similar to `inG`

WIP: Monotone Lenses

6 The Future is Built on

weak-mem virtual address ???

solution:

1. generalizing monPred with monotone lenses to encode that
the local state type embeds some concrete local state type

2. generalizing monPred modalities to lens-induced families of
modalities

3. generalizing invariants and ghost ownership

EXAMPLE:
VIRTUAL ADDRESS SPACES

Verified
Services

VM

vCPU vCPUvMem

…

VM

vCPU vCPU vMem

…

Virtualization

8 The Future is Built on

NOVA
Hypervisor

CPU CPUCPU CPU Memorydevices …

VM local state VM local state

page tables

unverified
clients

verified
clients

Example: virtual address spaces

9 The Future is Built on

➡ goal: building a points-to ownership for a VM’s memory

va ↦ v :≈ ∃ pa, va ↦AS pa ∗ pa ↦ v

va ↦AS pa :≈ in the current virtual address space AS,
va is mapped to pa

Page tables are local states of an address space

● va : virtual machine address
● pa : physical machine address

Building virtual points-to

10 The Future is Built on

● aProp := monPred AddrSpace iProp

○ ≈ AddrSpace → iProp, but “monotone”

● va ↦ v : aProp :≈ λ AS, ∃ pa, va ↦AS pa ∗ pa ↦ v

● for those without interesting interaction with AS, same rules:

○ { va ↦ v } * va { w. w = v ∗ va ↦ v }

● with interesting interactions with page tables, use ⊒AS and @AS P

○ state-explicit modalities inspired by Iris-based weak-mem works

receiver VMsender VM
vMem

Example: send memory across VMs

11 The Future is Built on

NOVA
Hypervisor

address
translation

Memory

vMem

size(L) = 512 va1 ↦ L

pa ↦ L

va2 ↦ L

va1 ↦AS1 pa va2 ↦AS2 pa

sender
VM1

Logically,

12 The Future is Built on

size(L) = 512

receiver
VM2

NOVA
Hypervisor

va1 ↦ L @AS1 va1 ↦ L @AS2 va2 ↦ L va2 ↦ L🌀
AS1 AS2

local-state explicit mode

Quick summary: a recipe for local states in Iris

13 The Future is Built on

● tProp := monPred I iProp, where I is the type of the local state

● for those without interesting interactions with the local state,
○ lift rules for tProp

○ pro: same rules as before

● for those with interesting (non-local) interactions,
○ explicit reasoning with local-state modalities (eg., ⊒i, @i P)

○ spoiler: adjustments for invariants and ghost ownership

MONOTONE LENSES
Composing local states

Composing local states?

15 The Future is Built on

weak-mem virtual address ???

vProp aProp
logic that knows about

weak-mem states
logic that knows about

address translation
future logics

➔ idea: work with some general tProp and, as needed, assume
that tProp “embeds” vProp and/or aProp and/or others.

Generalizing the local state

16 The Future is Built on

● idea in “typeclass” style:
○ have tProp as the assertion type
○ need weak-mem? assume HasVProp tProp
○ need address space? assume HasAProp tProp

● lightweight implementation with monPred
○ quantify over arbitrary local state type I: ∀ I, monPred I iProp (≈

tProp)
○ when needed, assume I “embeds” View (weak-mem states) and/or

AddrSpace (address-translation states)

➔ idea: work with some general tProp and, as needed, assume
that tProp “embeds” vProp and/or aProp and/or others.

Monotone Lenses

17 The Future is Built on

Context {I : biIndex} {PROP: bi}.

Notation tProp := monPred I PROP.

“I embeds the address-translation states AddrSpace“

≈ the existence of a monotone lens from I into AddrSpace

Context {LAS : I -ml> AddrSpace}.

💡Monotonicity to fit monPred,
crucial for stability of the frame.

Monotone Lenses

18 The Future is Built on

Context {I : biIndex} {PROP: bi}.

Notation tProp := monPred I PROP.

Context {J : biIndex} {L : I -ml> J}.
Structure MLens (I J : biIndex) : Type := MLensMake {

 mlens_get : I -> J ;

 mlens_set : J -> I -> I ;

 mlens_get_set : ∀ i j, mlens_get (mlens_set j i) = j ;

 mlens_set_get : ∀ i, mlens_set (mlens_get i) i = i ;

 mlens_set_set : ∀ i j1 j2, mlens_set j1 (mlens_set j2 i) = mlens_set j1 i ;

 mlens_get_mono : Proper ((⊑) ==> (⊑)) mlens_get ;

 mlens_set_mono : Proper ((⊑) ==> (⊑) ==> (⊑)) mlens_set ;

}.

Operations on lenses:
● product/projection
● compose
● equivalence
● disjointness
● inclusion
● Lid as a unit

Families of modalities

19 The Future is Built on

@(L,j) P : tProp :≈

P holds at a local state whose J component is j

⊒{L} j : tProp :≈

The current local state’s J component is at least j

● Resources that are local-state independent simply ignore I
● Resources that depend on some local-state J use J’s family of modalities

● + more modalities
● interactions

between families

Context {I : biIndex} {PROP: bi}.

Notation tProp := monPred I PROP.

Context {J : biIndex} {L : I -ml> J}.

INVARIANTS and GHOST OWN
with lenses

Invariants and ghost ownership?

21 The Future is Built on

weak-mem virtual address ???

vProp aProp
logic that knows about

weak-mem states
logic that knows about

address translation
future logics

tProp

Problem: BI-general invariants and ghost own

22 The Future is Built on

● Each lens-dependent monPred benefits from invariants and ghost own
○ Iris invariants and ghost ownership are tied to iProp

Class HasOwn {PROP : bi} {A : cmra} : Type := {

 own : gname → A → PROP ;

 own_op : ∀ γ (a b : A), own γ (a ⋅ b) ⊣⊢ own γ a ∗ own γ b ;

 own_mono :> ∀ γ, Proper (flip (≼) ==> (⊢)) (own γ) ;

 own_ne :> ∀ γ, NonExpansive (own γ) ;

 own_timeless :> ∀ γ (a : A), Discrete a → Timeless (own γ a) ;

 own_core_persistent :> ∀ γ a, CoreId a → Persistent (own γ a)

}.

● Generalization: BI with own
Class HasOwnValid `{!BiEmbed siPropI PROP} `{!HasOwn PROP A} ...

Class HasOwnUpd `{!BiBUpd PROP} `{!HasOwn PROP A} ...

Class HasOwnUnit `{!BiBUpd PROP} {A : ucmra} `{!HasOwn PROP A} ...

● Generalization: with modalities, invariants are general except for allocation
Definition inv_def N (P : PROP) : PROP :=

 (□ ∀ E : coPset, ⌜↑N ⊆ E⌝ → |={E,E ∖ ↑N}=> ▷ P ∗ (▷ P ={E ∖ ↑N,E}=∗ emp))%I.

➡ more use of siProp

Invariants for monPred’s

23 The Future is Built on

● Iris invariants are lifted into objective invariants for monPred
○ resources stored in invariants must be independent of the local state I
○ Objective P := ∀ i1 i2, P i1 ⊢ P i2
○ Objective (@i P)
○ ALLOC: Objective P → ▷ P ⊢ |={E}=> inv N P
○ INTRO: P ⊢ ∃ s, ⊒i ∗ @i P

○ ELIM: @i P ⊢ ⊒i -∗ P

● generalization for lenses:
○ ObjectiveWith L P := ∀ (i : I) (j : J), P i ⊢ P i[L := j]
○ P is independent of the J component of the local state
○ Components whose local states only differ in J can communicate P freely

■ @(Lcpu , c) l ↦ v can be shared across CPUs that are in the same address space
○ Derived notion of local invariants

■ @(Lcpu , c) l ↦ v can be put in AS-local invariants

Problems

24 The Future is Built on

● BI-general invariants and ghost ownership

● Algebra of lenses ❓
○ interactions of families of modalities

● Adequacy of wp ❓
● biIndex that depends on the logic ❓

○ an abstraction from one lens to another that depends on the logic
○ similar to higher-order ghost state

● Cross-BI modalities ❓
○ lenses generalize I in monPred I PROP
○ what about PROP? from monPred I PROP1 to monPred I PROP2?

■ at BedRock, `mpred` to `Rep`.

● Proofmode/Automation ❓

CONCLUSION

25 The Future is Built on

● monPred to hide local states and local-state modalities to expose them
when needed

● monotone lenses to abstract over and compose local states

● generalized invariants and ghost ownership as useful features of BIs

● work-in-progress, with quite a few TODOs

THANK YOU

Local states?

26 The Future is Built on

{ isLock(s, P) }

s.lock();

{ P }

…

…

…

{ isLock(s, P) * P }

s.unlock();

{ emp }

temporarily owning P locally

❌ not the kind of “local”
we focus on here

Local states?

27 The Future is Built on

#foo.hpp

static int x = 0;

class foo {

int f() { … ; x = 1; … }

};

compilation-unit local statics

#bar.cpp

int bar() {

int arr[N];

…

};

thread-local stack variables

➡ often modeled as explicit resources
(points-to)

Implicit local states

28 The Future is Built on

Local states are ambient:
1. they are always around/readily available

2. they should be unobtrusive

● by threading through weakest-pre

● more abstractly, by using non-atomic invariants

● by hiding them with Iris’ monPred

Example: weak memory in Iris

29 The Future is Built on

{ tid ↦ V ∗ P V } e on tid { (v, V’). tid ↦ V’ ∗ Q V’ }

explicit ownership of
the local state

a View—presenting the
local cache of a CPU

● Most things don’t care about the view V, only memory accesses do

● In many cases, memory accesses do not have interesting
interactions with the view V

➡ Motivation for hiding views, and only let them bubble up when it’s
“interesting”.

Implicit weak memory states in Iris

30 The Future is Built on

{ tid ↦ V ∗ P V } e on tid { (v, V’). tid ↦ V’ ∗ Q V’ }

resources may depend
on the local state

{ P } e { v. Q }

P Q : monPred View iProp ≈ View → iProp, but “monotone”

wp e { v. Q } : monPred View iProp :≈

λ V, ∀ tid, tid ↦ V -∗ wp e on tid { (v, V’). tid ↦ V’ ∗ Q V’ }

Implicit weak memory states in Iris

31 The Future is Built on

P Q : monPred View iProp ≈ View → iProp, but “monotone”
{ emp } z1 + z2 { v. ⌜ v = z1 +Z z2 ⌝ }

{ l ↦ _ } l :=na v { l ↦ v }
completely local

unobtrusive

non-local cross-core
communication❓

{ l ↦at _ } l :=at v { ⊒V ∗ l ↦at (v,V) }

{ l ↦at (v,V) } *at l { v. l ↦at (v,V) ∗ ⊒V }

the local state temporarily explicit
with modalities

Communicating local-state dependent resources

32 The Future is Built on

{ P ∗ l ↦at _ } l :=at v { ⊒V ∗ @V P ∗ l ↦at (v,V) }

{ @V P ∗ l ↦at (v,V) } *at l { v. l ↦at (v,V) ∗ ⊒V ∗ P }

{ l ↦at _ } l :=at v { ⊒V ∗ l ↦at (v,V) }

{ l ↦at (v,V) } *at l { v. l ↦at (v,V) ∗ ⊒V }

➡ releasing resources:

➡ acquiring resources:

implicitly local-state dependent explicitly local-state dependent

Some properties

33 The Future is Built on

INTRO: P ⊢ ∃ j, ⊒{L}j ∗ @(L,j) P

ELIM: @(L,j) P ⊢ ⊒{L}j -∗ P

COMM: Lj ## Lk → @(Lj,j) @(Lk,k) P ⊣⊢ @(Lk, k) @(Lj, j) P

