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Local states?
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Usually, l ↦ v means the same everywhere

But everyone has secrets!

Alice Bob Charles

l ↦ 💛 l ↦ 🗡 l ↦ 🏵

differently depending 
on one’s local states!



Interpretation depends on local states
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● not uncommon

○ in weak memory

○ in distributed systems

○ in virtual address spaces

l ↦ v depends on
○ local caches

○ local node states

○ local page tables

Alice Bob Charles

l ↦{A} v :≈
l ↦ 💛

l ↦{B} v :≈ l 
↦ 🗡

l ↦{C} v :≈ 
l ↦ 🏵

● a solution: indexing resources by the local state l ↦{s} v



Indexing resources by local state: P s
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● but not everything depends on some local states—local states 
should be ambient

○ hide local states with Iris’ monPred

○ only work with local states explicitly when needed

■ using modalities, inspired by Iris-based weak-mem works

● benefits:
○ cleaner for things that don’t care about local states
○ more idiomatic reasoning with explicit local states

examples coming in a moment …



But what about composing local states?
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weak-mem virtual address ???

● how to compose a logic that knows about weak-mem and a logic 
that knows about virtual address?

● open world problem, similar to `inG`



WIP: Monotone Lenses
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weak-mem virtual address ???

solution:

1. generalizing monPred with monotone lenses to encode that 
the local state type embeds some concrete local state type

2. generalizing monPred modalities to lens-induced families of 
modalities

3. generalizing invariants and ghost ownership



EXAMPLE:
VIRTUAL ADDRESS SPACES



Verified
Services

VM

vCPU vCPUvMem

…

VM

vCPU vCPU vMem

…

Virtualization

8 The Future is Built on

NOVA
Hypervisor

CPU CPUCPU CPU Memorydevices …

VM local state VM local state

page tables

unverified 
clients

verified 
clients



Example: virtual address spaces
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➡ goal: building a points-to ownership for a VM’s memory

va ↦ v  :≈ ∃ pa, va ↦AS pa ∗ pa ↦ v

va ↦AS pa :≈ in the current virtual address space AS,
va is mapped to pa

Page tables are local states of an address space

● va : virtual machine address
● pa : physical machine address



Building virtual points-to

10 The Future is Built on

● aProp := monPred AddrSpace iProp

○ ≈ AddrSpace → iProp, but “monotone”

● va ↦ v : aProp :≈  λ AS, ∃ pa, va ↦AS pa ∗ pa ↦ v

● for those without interesting interaction with AS, same rules:

○  { va ↦ v } * va { w. w = v ∗ va ↦ v }

● with interesting interactions with page tables, use ⊒AS and @AS P

○ state-explicit modalities inspired by Iris-based weak-mem works



receiver VMsender VM
vMem

Example: send memory across VMs
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NOVA
Hypervisor

address 
translation

Memory

vMem

size(L) = 512 va1 ↦ L

pa ↦ L

va2 ↦ L

va1 ↦AS1 pa va2 ↦AS2 pa



sender 
VM1

Logically,

12 The Future is Built on

size(L) = 512

receiver 
VM2

NOVA
Hypervisor

va1 ↦ L @AS1 va1 ↦ L @AS2 va2 ↦ L va2 ↦ L🌀
AS1 AS2

local-state explicit mode



Quick summary: a recipe for local states in Iris
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● tProp := monPred I iProp, where I is the type of the local state

● for those without interesting interactions with the local state,
○ lift rules for tProp

○ pro: same rules as before

● for those with interesting (non-local) interactions,
○ explicit reasoning with local-state modalities (eg., ⊒i, @i P)

○ spoiler: adjustments for invariants and ghost ownership



MONOTONE LENSES
Composing local states



Composing local states?
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weak-mem virtual address ???

vProp aProp
logic that knows about 

weak-mem states
logic that knows about 

address translation
future logics

➔ idea: work with some general tProp and, as needed, assume 
that tProp “embeds” vProp and/or aProp and/or others.



Generalizing the local state
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● idea in “typeclass” style:
○ have tProp as the assertion type
○ need weak-mem? assume HasVProp tProp
○ need address space? assume HasAProp tProp

● lightweight implementation with monPred
○ quantify over arbitrary local state type I: ∀ I, monPred I iProp (≈ 

tProp)
○ when needed, assume I “embeds” View (weak-mem states) and/or 

AddrSpace (address-translation states)

➔ idea: work with some general tProp and, as needed, assume 
that tProp “embeds” vProp and/or aProp and/or others.



Monotone Lenses
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Context {I  : biIndex} {PROP: bi}.

Notation tProp := monPred I PROP.

“I embeds the address-translation states AddrSpace“

≈ the existence of a monotone lens from I into AddrSpace

Context {LAS : I -ml> AddrSpace}.

💡Monotonicity to fit monPred, 
crucial for stability of the frame.



Monotone Lenses
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Context {I  : biIndex} {PROP: bi}.

Notation tProp := monPred I PROP.

Context {J : biIndex} {L : I -ml> J}.
Structure MLens (I J : biIndex) : Type := MLensMake {

 mlens_get : I -> J ;

 mlens_set : J -> I -> I ;

 mlens_get_set : ∀ i j, mlens_get (mlens_set j i) = j ;

 mlens_set_get : ∀ i, mlens_set (mlens_get i) i = i ;

 mlens_set_set : ∀ i j1 j2, mlens_set j1 (mlens_set j2 i) = mlens_set j1 i ;

 mlens_get_mono : Proper ((⊑) ==> (⊑)) mlens_get ;

 mlens_set_mono : Proper ((⊑) ==> (⊑) ==> (⊑)) mlens_set ;

}.

Operations on lenses:
● product/projection
● compose
● equivalence
● disjointness
● inclusion
● Lid as a unit



Families of modalities
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@(L,j) P : tProp :≈

P holds at a local state whose J component is j

⊒{L} j    : tProp :≈

The current local state’s J component is at least j

● Resources that are local-state independent simply ignore I
● Resources that depend on some local-state J use J’s family of modalities

● + more modalities
● interactions 

between families

Context {I  : biIndex} {PROP: bi}.

Notation tProp := monPred I PROP.

Context {J : biIndex} {L : I -ml> J}.



INVARIANTS and GHOST OWN
with lenses



Invariants and ghost ownership?
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weak-mem virtual address ???

vProp aProp
logic that knows about 

weak-mem states
logic that knows about 

address translation
future logics

tProp



Problem: BI-general invariants and ghost own
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● Each lens-dependent monPred benefits from invariants and ghost own
○ Iris invariants and ghost ownership are tied to iProp

Class HasOwn {PROP : bi} {A : cmra} : Type := {

 own          : gname → A → PROP ;

 own_op       : ∀ γ (a b : A), own γ (a ⋅ b) ⊣⊢ own γ a ∗ own γ b ;

 own_mono     :> ∀ γ, Proper (flip (≼) ==> (⊢)) (own γ) ;

 own_ne       :> ∀ γ, NonExpansive (own γ) ;

 own_timeless :> ∀ γ (a : A), Discrete a → Timeless (own γ a) ;

 own_core_persistent :> ∀ γ a, CoreId a → Persistent (own γ a)

}.

● Generalization: BI with own
Class HasOwnValid `{!BiEmbed siPropI PROP} `{!HasOwn PROP A} ...

Class HasOwnUpd `{!BiBUpd PROP} `{!HasOwn PROP A} ...

Class HasOwnUnit `{!BiBUpd PROP} {A : ucmra} `{!HasOwn PROP A} ...

● Generalization: with modalities, invariants are general except for allocation
Definition inv_def N (P : PROP) : PROP :=

   (□ ∀ E : coPset, ⌜↑N ⊆ E⌝ → |={E,E ∖ ↑N}=> ▷ P ∗ (▷ P ={E ∖ ↑N,E}=∗ emp))%I.

➡ more use of siProp



Invariants for monPred’s
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● Iris invariants are lifted into objective invariants for monPred
○ resources stored in invariants must be independent of the local state I
○ Objective P := ∀ i1 i2, P i1 ⊢ P i2
○ Objective (@i P)
○ ALLOC: Objective P → ▷ P ⊢ |={E}=> inv N P
○ INTRO: P ⊢ ∃ s, ⊒i ∗ @i P

○ ELIM:   @i P ⊢ ⊒i -∗ P

● generalization for lenses:
○ ObjectiveWith L P := ∀ (i : I) (j : J), P i ⊢ P i[L := j]
○ P is independent of the J component of the local state
○ Components whose local states only differ in J can communicate P freely

■ @(Lcpu , c) l  ↦ v can be shared across CPUs that are in the same address space
○ Derived notion of local invariants

■ @(Lcpu , c) l  ↦ v can be put in AS-local invariants



Problems
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● BI-general invariants and ghost ownership

● Algebra of lenses ❓
○ interactions of families of modalities

● Adequacy of wp ❓
● biIndex that depends on the logic ❓

○ an abstraction from one lens to another that depends on the logic
○ similar to higher-order ghost state

● Cross-BI modalities ❓
○ lenses generalize I in monPred I PROP
○ what about PROP? from monPred I PROP1 to monPred I PROP2?

■ at BedRock, `mpred` to `Rep`.

● Proofmode/Automation ❓



CONCLUSION
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● monPred to hide local states and local-state modalities to expose them 
when needed

● monotone lenses to abstract over and compose local states

● generalized invariants and ghost ownership as useful features of BIs

● work-in-progress, with quite a few TODOs

THANK YOU



Local states?
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{ isLock(s, P) }

s.lock();

{ P }

…

…

…

{ isLock(s, P) * P }

s.unlock();

{ emp }

temporarily owning P locally

❌ not the kind of “local” 
we focus on here



Local states?
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#foo.hpp

static int x = 0;

class foo {

int f() { … ; x = 1; … }

};

compilation-unit local statics

#bar.cpp

int bar() {

int arr[N];

…

};

thread-local stack variables

➡ often modeled as explicit resources 
(points-to)



Implicit local states
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Local states are ambient:
1. they are always around/readily available

2. they should be unobtrusive

● by threading through weakest-pre

● more abstractly, by using non-atomic invariants

● by hiding them with Iris’ monPred



Example: weak memory in Iris
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{ tid ↦ V ∗ P V } e on tid { (v, V’). tid ↦ V’ ∗ Q V’ }

explicit ownership of 
the local state

a View—presenting the 
local cache of a CPU

● Most things don’t care about the view V, only memory accesses do

● In many cases, memory accesses do not have interesting 
interactions with the view V

➡ Motivation for hiding views, and only let them bubble up when it’s 
“interesting”.



Implicit weak memory states in Iris
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{ tid ↦ V ∗ P V } e on tid { (v, V’). tid ↦ V’ ∗ Q V’ }

resources may depend 
on the local state

{ P } e { v. Q }

P Q : monPred View iProp    ≈    View → iProp, but “monotone”

wp e { v. Q } : monPred View iProp :≈

λ V,  ∀ tid, tid ↦ V -∗ wp e on tid { (v, V’). tid ↦ V’ ∗ Q V’ }



Implicit weak memory states in Iris
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P Q : monPred View iProp    ≈    View → iProp, but “monotone”
{ emp } z1 + z2 { v.  ⌜ v = z1 +Z z2 ⌝  }

{ l ↦ _ } l :=na v { l ↦ v }
completely local

unobtrusive

non-local cross-core 
communication❓

{ l ↦at _ } l :=at v { ⊒V ∗ l ↦at (v,V) }

{ l ↦at (v,V) } *at l { v.  l ↦at (v,V) ∗ ⊒V }

the local state temporarily explicit 
with modalities



Communicating local-state dependent resources
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{ P ∗ l ↦at _ } l :=at v { ⊒V ∗ @V P ∗ l ↦at (v,V) }

{ @V P ∗ l ↦at (v,V) } *at l { v.  l ↦at (v,V) ∗ ⊒V ∗ P }

{ l ↦at _ } l :=at v { ⊒V ∗ l ↦at (v,V) }

{ l ↦at (v,V) } *at l { v.  l ↦at (v,V) ∗ ⊒V }

➡ releasing resources:

➡ acquiring resources:

implicitly local-state dependent explicitly local-state dependent



Some properties
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INTRO: P ⊢ ∃ j, ⊒{L}j ∗ @(L,j) P

ELIM: @(L,j) P ⊢ ⊒{L}j -∗ P

COMM: Lj ## Lk → @(Lj,j) @(Lk,k) P  ⊣⊢ @(Lk, k) @(Lj, j) P


