Purity of an ST Monad

Full Abstraction by Semantically Type Back-Translation

Koen Jacobs (me)
Dominique Devriese

Amin Timany

1994

John & Simon add an ST monad to Haskell

Lazy Functional State Threads

John Launchbury and Simon L Peyton Jones
University of Glasgow
Email: {simonpj,jl}@dcs.glasgow.ac.uk Phone: +44-41-330-4500

March 10, 1994

Abstract

Some algorithms make critical internal use of updatable
state, even though their external specification is purely
functional. Based on earlier work on monads, we present
a way of securely encapsulating stateful computations
that manipulate multiple, named, mutable objects, in the
context of a non-strict, purely-functional language.

The security of the encapsulation is assured by the type
system, using parametricity. Intriguingly, this para-
metricity requires the provision of a (single) constant with
a rank-2 polymorphic type.

A shorter version of this paper appears in the Proceedings
of the ACM Conference on Programming Languages De-
stgn and Implementation (PLDI), Orlando, June 1994.

1 Introduction

Purely functional programming languages allow many al-
gorithms to be expressed very concisely, but there are a
few algorithms in which in-place updatable state seems
to play a crucial role. For these algorithms, purely-
functional languages, which lack updatable state, appear
to be inherently inefficient (Ponder, McGeer & Ng [1988]).

Take, for example, algorithms based on the use of
incrementally-modified hash tables, where lookups are in-
terleaved with the insertion of new items. Similarly, the
union/find algorithm relies for its efficiency on the set
representations being simplified each time the structure
is examined. Likewise, many graph algorithms require a
dynamically changing structure in which sharing is ex-
plicit, so that changes are visible non-locally.

There is, furthermore, one absolutely unavoidable use of
state in every functional program: input/output. The
plain fact of the matter is that the whole purpose of run-
ning a program, functional or otherwise, is to make some
side effect on the world an update-in-place, if you
please. In many programs these 1/0 effects are rather
complex, involving interleaved reads from and writes to

the world state.

We use the term “stateful” to describe computations or
algorithms in which the programmer really does want to
manipulate (updatable) state. What has been lacking
until now is a clean way of describing such algorithms
in a functional language — especially a non-strict one
without throwing away the main virtues of functional lan-
guages: independence of order of evaluation (the Church-
Rosser property), referential transparency, non-strict se-
mantics, and so on.

In this paper we describe a way to express stateful al-
gorithms in non-strict, purely-functional languages. The
approach is a development of our earlier work on monadic
I/O and state encapsulation (Launchbury [1993]; Pey-
ton Jones & Wadler [1993]), but with an important tech-
nical innovation: we use parametric polymorphism to
achieve safe encapsulation of state. It turns out that this
allows mutable objects to be named without losing safety,
and it also allows input foutput to be smoothly integrated
with other state mainpulation.

The other important feature of this paper is that it de-
scribes a complete system, and one that is implemented
in the Glasgow Haskell compiler and freely available. The
system has the following properties:

e Complete referential transparency is maintained. At
first it is not clear what this statement means: how
can a stateful computation be said to be referentially
transparent” To be more precise, a stateful compu-
tation is a stale transformer, that is, a function from
an initial state to a final state. It is like a “script”,
detailing the actions to be performed on its input
state. Like any other function, it is quite possible to
apply a single stateful computation to more than one
input state.

So, a state transformer is a pure function. But, be-
cause we guarantee that the state is used in a single-
threaded way, the final state can be constructed by
modifving the input state in-place. This efficient im-
plementation respects the purely-functional seman-2)

0O O Ul WD B

NNNMNMNNMNNMNNNRRRRPRPRRRRPRBRP
N OO WM OWVWOLONOULE WN R OV

—— NAIVE Interface of the haskell ST-Monad

ST :: * =>
Ref :: * >

newRef :: a
readRef :

writeRef

return :: a
(>>=) ¢ ST

runST :: ST
—— PROBLEMS

location
location

-> ST (Ref a)
Ref a -> ST a
Ref a -> a -> ST ()

-> ST a
a -> (a -> ST b) -> ST b

a -> a
AHEAD

Ref Int
runST (newRef 0)

produceInteger :: () -> Int
producelInteger = runST (do

n <- readRef location
writeRef location (n + 1)
return n)

definitelyTrue :: Bool

definitelyTrue = producelnteger () == producelnteger ()

3.1

0O ~1 Oy U1 o W N =

NNNMNNMNNMNNMNNMNNRRRRRRRRRRE
N O U WNEFRFOWVWONOU D WNERE OV

—— NAIVE Interface of the haskell ST-Monad

ST s * => *

Ref :: * > *

newRef :: a -> ST (Ref a)
readRef :: Ref a -> ST a
writeRef :: Ref a -> a -> ST ()
return :: a -> ST a

(>>=) :: ST a -=> (a -> ST b) -> ST b
runST :: ST a -> a

—-— PROBLEMS AHEAD

location :: Ref Int
location :: runST (newRef 0)
producelInteger :: () -> Int

produceInteger = runST (do
n <- readRef location
writeRef location (n + 1)
return n)

definitelyTrue :: Bool

definitelyTrue = producelnteger () == producelnteger ()

3.2

~

—— NAIVE Interface of the haskell ST-Monad

newRef :: a -> ST (Ref a)

readRef :: Ref a -> ST a

writeRef :: Ref a -> a -> ST ()
return :: a -> ST a

(>>=) :: ST a -> (a -> ST b) -> ST b
runST :: ST a -> a

-—- PROBLEMS AHEAD

location :: Ref Int
location :: runST (newRef 0)
producelnteger :: () -> Int

produceInteger = runST (do
n <- readRef location
writeRef location (n + 1)
return n)

definitelyTrue :: Bool
definitelyTrue = producelnteger () == producelnteger

()

3.3

W N =

-~

00

W N = O O

—— NAIVE Interface of the haskell ST-Monad

ST 3 * => *

Ref :: * > *

newRef :: a -> ST (Ref a)

readRef :: Ref a -> ST a

writeRef :: Ref a -> a -> ST ()
return :: a -> ST a

(>>=) :: ST a -> (a -> ST b) -> ST b
runST :: ST a -> a

-—- PROBLEMS AHEAD

Ref Int

location :
:: runST (newRef 0)

location

producelInteger :: () -> Int
producelInteger = runST (do
n <- readRef location
writeRef location (n + 1)
return n)

definitelyTrue :: Bool
definitelyTrue = producelnteger () == producelnteger ()

3.4

00O o O s WIDN -

NNNMNNMNNMNNMNNMNNRRRRRRRRRRE
N O U WNRFRFOWVWONOU D WNRE OV

—— NAIVE Interface of the haskell ST-Monad

newRef :: a -> ST (Ref a)

readRef :: Ref a -> ST a

writeRef :: Ref a -> a -> ST ()
return :: a -> ST a

(>>=) :: ST a -> (a -> ST b) -=> ST b

runST :: ST a -> a
—— PROBLEMS AHEAD

location :: Ref Int
location :: runST (newRef 0)

producelInteger :: () -> Int
produceInteger = runST (do
n <- readRef location
writeRef location (n + 1)
return n)

definitelyTrue :: Bool

definitelyTrue = producelnteger () == producelnteger ()

3.5

00O o O s WIDN -

NNNMNNMNNMNNMNNNRRRRERRRRRR
N O UL WNROWVWONOULE WN R OV

—— NAIVE Interface of the haskell ST-Monad

ST 2 * => *
Ref :: * > *

newRef :: a -> ST (Ref a)
readRef :: Ref a -> ST a
writeRef :: Ref a -> a -> ST ()
return :: a -> ST a

(>>=) :: ST a -=> (a -> ST b) -> ST b
runST :: ST a -> a

-— PROBLEMS AHEAD

location :: Ref Int
location :: runST (newRef 0)
producelInteger :: () -> Int

produceInteger = runST (do
n <- readRef location
writeRef location (n + 1)
return n)

definitelyTrue :: Bool
definitelyTrue = producelnteger () == producelnteger ()

3.6

* > %
newRef :: a -> (a)
readRef :: a -> a
writeRef :: a -> a -> ()
return :: a -> a
(>>=) = a -> (a -> b) -> b
runST :: a -> a
location
location :: runST (newRef 0)

20 producelInteger :: () -> Int
producelInteger = runST (
n <- readRef location

writeRef location (n + 1)

return n)

26 definitelyTrue :: Bool
27 definitelyTrue = producelnteger () ==

produceInteger ()

3.7

Ref Int
runST (newRef 0)

17 location :
18 location :

21 producelInteger = runST (do

22 n <- readRef location

23 writeRef location (n + 1)
24 return n)

—— NAIVE Interface of the haskell ST-Monad

ST 3 * => *

Ref :: * => *

newRef :: a -> ST (Ref a)

readRef :: Ref a -> ST a

writeRef :: Ref a -> a -> ST ()
return :: a -> ST a

(>>=) :: ST a -=> (a -> ST b) -> ST b
runST :: ST a -> a

-— PROBLEMS AHEAD

location :: Ref Int
location :: runST (newRef 0)
producelnteger :: () -> Int

produceInteger = runST (do
n <- readRef location
writeRef location (n + 1)
return n)

26 definitelyTrue :: Bool
27 definitelyTrue = producelnteger () == producelnteger ()

3.9

tics of the state-transformer function, so all the usual
techniques for reasoning about functional programs
continue to work. Similarly, stateful programs can
be exposed to the full range of program transforma-
tions applied by a compiler, with no special cases or
side conditions.

The programmer has complete control over where in-
place updates are used and where they are not. For
example, there is no complex analysis to determine
when an array 1s used in a single-threaded way. Since
the viability of the entire program may be predicated
on the use of in-place updates, the programmer must
be confident in. and be able to reason about, the
outcome.,

Mutable objects can be named., This ability sounds
innocuous enough, but once an object can be named
its use cannot be controlled as readily. Yet naming
is important. For example, it gives us the ability to
manipulate multiple mutable objects simultaneously

Input/output takes its place as a specialised form
of stateful computation. Indeed, the type of I/O-
performing computations is an instance of the (more
polymorphic) type of stateful computations. Along
with 1/O comes the ability to call imperative proce-
dures written in other languages.

It is possible to encapsulate stateful computations so
that they appear to the rest of the program as pure
(stateless) functions which are guaranteed by the type
system to have no interactions whatever with other
computations, whether stateful or otherwise (except
via the values of arguments and results, of course).

Complete safety is maintained by this encapsula-
tion. A program may contain an arbitrary number of
stateful sub-computations, each simultaneously
tive, without concern that a mutable object from one
might be mutated by another.

Stateful computations can even be performed lazily
without losing safety. For example, suppose that
stateful depth-first search of a graph returns a list
of vertices in depth-first order. If the consumer of
this list only evaluates the first few elements of the
list, then only enough of the stateful computation is
executed to produce those elements.

2 Overview

This section introduces the key ideas of our approach to
stateful computation. We begin with the programmer’s-
eye-view.

2.1 State transformers

A value of type (ST s a) is a computation which trans-
forms a state indexed by type s, and delivers a value of
type a. You can think of it as a box, like this:

Result

|

—
State out

State in

Notice that this is a purely-functional account of state.
The “ST” stands for “a state transformer”, which we take
to be synonymous with “a stateful computation™: the
computation is seen as transforming one state into an-
other. (Of course, it is our intention that the new state
will actually be constructed by modifying the old one in
place, a matter to which we return in Section 6.) A state
transformer is a first-class value: it can be passed to a
function, returned as a result, stored in a data structure,
duplicated freely, and so on.

A state transformer can have other inputs besides the
state; if so, it will have a functional type. It can also have
many results, by returning them in a tuple. For example,
a state transformer with two inputs of type Int, and two
results of type Int and Bool, would have the type:

Int -> Int -> ST & (Int,Bool)

Its picture might look like this:

Inputs Results
- E—
State in State out

The simplest state transformer, returnST, simply delivers

a value without affecting the state at all:
returnST :: a -> ST & a

The picture for returnST is like this:

State in State out

2.2 References

What, then, is a “state”? Part of every state is a finite

mapping from references to values. (A state may also
have other components, as we will see in Section 4.) A
reference can be thought of as the name of (or address of)

€€ So all the usual techniques for
reasoning about functional
programs continue to work...

(It is possible to encapsulate
stateful computations so that they
appear to the rest of the programs
as pure (stateless) functions which
are guaranteed by the type system

fo have no interaction whatever
with other computations...

tics of the state-transformer function so all the usual
techniques for reasoning about funm
continue towork: "Similarly, stateful programs can
be exposed to the full range of program transforma-
tions applied by a compiler, with no special cases or
side conditions.

The programmer has complete control over where in-
place updates are used and where they are not. For
example, there is no complex analysis to determine
when an array is used in a single-threaded way. Since
the viability of the entire program may be predicated
on the use of in-place updates, the programmer must
be confident in, and be able to reason about, the
outcome.,

Mutable objects can be named., This ability sounds
innocuous enough, but once an object can be named

its use cannot be controlled as readily. Yel naming
is important. For example, it gives us the ability to
manipulate multiple mutable objects simultaneously.

Input/output takes its place as a specialised form
of stateful computation. Indeed, the type of I/O-
performing computations is an instance of the (more
polymorphic) type of stateful computations. Along
with 1/O comes the ability to call imperative proce-
dures written in other languages.

. %?Wﬂﬂ@@o
that they appear to the rest of the-pregram.as pure
(stateless) functions whi type
system to have no interactions whatever with other

computations, whether stateful or otherwise (except
via the values of arguments and results, of course).

Complete safety is maintained by this encapsula-
tion. A program may contain an arbitrary number of
stateful sub-computations, each simultaneously ac-
tive, without concern that a mutable object from one
might be mutated by another.

Stateful computations can even be performed lazily
without losing safety. For example, suppose that
stateful depth-first search of a graph returns a list
of vertices in depth-first order. If the consumer of
this list only evaluates the first few elements of the
list, then only enough of the stateful computation is
executed to produce those elements.

2 Overview

This section introduces the key ideas of our approach to
stateful computation. We begin with the programmer’s-
eye-view.

2.1 State transformers

A value of type (ST s a) is a computation which trans-
forms a state indexed by type s, and delivers a value of
type a. You can think of it as a box, like this:

Result
—_— —
State in State out

Notice that this is a purely-functional account of state.
The “ST” stands for “a state transformer”, which we take
to be synonymous with “a stateful computation™: the
computation is seen as transforming one state into an-
other. (Of course, it is our intention that the new state
will actually be constructed by modifying the old one in
place, a matter to which we return in Section 6.) A state
transformer is a first-class value: it can be passed to a
function, returned as a result, stored in a data structure,
duplicated freely, and so on.

A state transformer can have other inputs besides the
state; if so, it will have a functional type. It can also have
many results, by returning them in a tuple. For example,
a state transformer with two inputs of type Int, and two
results of type Int and Bool, would have the type:

Int -> Int -> ST & (Int,Bool)

Its picture might look like this:

Inputs Results
— —
State in State out

The simplest state transformer, returnST, simply delivers
a value without affecting the state at all:
returnST :: a -> ST & a

The picture for returnST is like this:

State in State out

2.2 References

What, then, is a “state”? Part of every state is a finite
mapping from references to values. (A state may also
have other components, as we will see in Section 4.) A
reference can be thought of as the name of (or address of']4

—

1 -- Interface of the haskell ST-Monad

N => F > %
N => * > %

newRef :: V a, s. a —> s (s a)
readRef :: V a, s. s a -> S
writeRef :: V a, s. s a->a ->
return :: V a, s. a -> s a

(>>=) :: VY a, b, s. s a-> (a ->
runST :: V a. (V s. s a) -> a
location :: S

location :: runST (newRef 0)

3 ST
4 Ref

N =>

*

*

-> *
-> *

5.1

R O W 00 J O

ol

newRef :: V a, s. a -=> ST s (Ref s a)
readRef :: V a, s. Ref s a -=> ST s a
writeRef :: V a, s. Ref s a -> a -> ST s ()
return :: V a, s. a -=> ST s a

ST s a->(a->8S8T s b) ->ST s b

<
V)
*2
0]

(>>=) :

13 runST

YV a.

(V s.

5.3

15 location
16 location

Ref s Int
runST (newRef 0)

5.4

15
16

location
location

Ref s Int
runST (newRef 0)

5.5

€€ So all the usual techniques for reasoning about functional
programs continue to work...

blee :: ST n Int
blee

bloo :: ST n Bool -> Int
bloo runST ...

blaa :: Int -> Int
blaa = ...

1
2
3
4
5
6
7
8

subprogram :: (Int -> Int) -> Bool ->
((String -> String) -> String) ->
List String
3 subprogram = ...

foo :: ST n (Int -> ST n Bool)
foo = ...

€€ So all the usual techniques for reasoning about functional
programs continue to work...

subprogram :: (Int -> Int) -> Bool ->
((String -> String) -> String) ->
List String
subprogram = ...

6.1

Given two programs, e; and e, they are contextually equivalent, eq =~ €3
if
VC. Cle;| behaves the same as Cles)

Any two pure programs, e; and es,
contextually equivalent in the pure language,

should be contertually equivalent in the extended stateful language.

€€ No pure context can distinguish the two

Any two pure programs, e; and es,
contextually equivalent in the pure language,

should be contertually equivalent in the extended stateful language.

8.1

€€ No pure context can distinguish the two

Any two pure programs, e; and es,
contextually equivalent in the pure language,

should be contertually equivalent in the extended stateful language.

€ No stateful context can distinguish the two

8.2

6 Statefulness does not provide us with any more distinguishability

€€ No pure context can distinguish the two

Any two pure programs, e; and es,
contextually equivalent in the pure language,

should be contertually equivalent in the extended stateful language.

€ No stateful context can distinguish the two

8.3

6 Statefulness does not provide us with any more distinguishability

€€ No pure context can distinguish the two

Any two pure programs, e; and es,
contextually equivalent in the pure language,

should be contertually equivalent in the extended stateful language.

€ No stateful context can distinguish the two

Note: full abstraction is 1) preservation of ctx. equiv. and 2) reflection of ctx. equiv.

8.4

(Int -> Int -> Bool) -> List Int -> List Int

bloo
bloo =

blaa n

faa nm

ST n Bool -> Int
runST

= runST

= runST

9.1

(Int -> Int -> Bool)

-> List Int

-> List Int

9.2

Adding ST to Haskell

Adding ST to STLCu

10

Adding ST to Haskell Adding ST to STLCu

- No polymorphism -
- Call by Value -

10.1

STLG:)\

tu=1|Z|B| Xt | r+r | X | pXt | 77

I'e:T

11

STLG:)\

tu=1|Z|B| Xt | r+r | X | pXt | 77

I'e:T

Extension with ST A’ET

STLG:)\

tu=1|Z|B| Xt | r+r | X | pXt | 77

I'e:T

Extension with ST A’ET

¢ ¢ dom(h)
(h,ref v) ~p, (hW {f + v}, return ¢)

(hw{t— v} !1t) ~p, (hw {f — v}, return v)

(hW{t— v}t e—v)~p(hy{f— v} return ())

11.2

STLG:)\

tu=1|Z|B| Xt | r+r | X | pXt | 77

I'e:T
Extension with ST A"
ST
Tu=..|STRef X7 |STX <

=|Tre:T

¢ ¢ dom(h)
(h,ref v) ~p, (hW {f + v}, return ¢)

(hw{t— v} !1t) ~p, (hw {f — v}, return v)

(hW{t— v}t e—v)~p(hy{f— v} return ())

11.3

STLG:)\

tu=1|Z|B| Xt | r+r | X | pXt | 77

I'Fe:T
Extension with ST A"
ST
7u=.,.|STRef X7 |STX 7

=|Tre:T

¢ ¢ dom(h)
(h,ref v) ~p, (hW {f + v}, return ¢)

(hw{t— v} !1t) ~p, (hw {f — v}, return v)

(hW{t— v}t e—v)~p(hy{f— v} return ())

EX|Tre:STX 1 SR
Z|T+runST {e}: 7

E|Tre:t =X
Z | I'+refe:STX (STRef X 7)

E|Tre:STRef X 7 E|Tre :7T

E|Treee :STX1

11.4

STLG:)\

tu=1|Z|B| Xt | r+r | X | pXt | 77

I'Fe:T
Extension with ST A"
ST
7u=.,.|STRef X7 |STX 7

=|Tre:T

¢ ¢ dom(h)
(h,ref v) ~p, (hW {f + v}, return ¢)

(hw{t— v} !1t) ~p, (hw {f — v}, return v)

(hW{t— v}t e—v)~p(hy{f— v} return ())

EX|Tre:STX 1 SR
Z|T+runST {e}: 7

E|Tre:t =X
E|T+refe:STX (STRef X 7)

E|Tre:STRef X 7 E|Tre :7

E|Tree«e :STX1

11.5

STLG:)\

tu=1|Z|B| Xt | r+r | X | pXt | 77

I'Fe:T
Extension with ST A"
ST
7u=.,.|STRef X7 |STX 7

=|Tre:T

¢ ¢ dom(h)
(h,ref v) ~p, (hW {f + v}, return ¢)

(hw{t— v} !1t) ~p, (hw {f — v}, return v)

(hW{t— v}t e—v)~p(hy{f— v} return ())

EX|T're:STX 1 SR
E|T+FrunST {e}: 7

E|Tre:t =X
E|T+refe:STX (STRef X 7)

E|Tre:STRef X 7 E|Tre :7

E|Tree«e :STX1

11.6

If T'F e =y €

T_T:A" = Agp

: T, then

TN F [Ter]l e [Tea [l = [T 1]

12

If ' b ey ~gx €

If

VEC: ()= (51)
Cleq] U iﬂC[ez] U

T_T: A" = A,

: T, then

, then

TN F [Ter]l e [Tea [l = [T 1]

VEC:C T = ([51)
CllTes 11 U iff Cllle211] U

121

T_T: A" = A,

If T v+ e =¢gx € @ T, then

VEC:(T;0)= (-51)
Cles] | iff Cleo] |

If

, then

TN F [Ter]l e [Tea [l = [T 1]

VEC:C T = ([51)
CllTes 11 U iff Cllle211] U

Given+ C: (- | [[TTI; T2T)) = (- | - 51), there exists a context C\ : (T;7) = (-31).
This is a valid emulation, i.e. for allT' + e : 7 we have: |

Cylel U iff C[ITeTI1 U

..

12.2

T_T: A" = A,

If T'F e =gy € : T, then - | [[TT] + [TerT] = [TexTl = [T77]

VeC: o= (] o (Y ECCITITETTD = (-] -3 1)
U iff Clea] U | C[[TeiTIT U iff C[ITeaTI] U

If

é(Statefulness can be purely emulated

--

 Givent C: (| [TTTI;[T2T]) = (- | - ;1), there exists a context - C ()= (-50).
ThIS is a valid emulation, i.e. for alll' + e : T we have: 5

Cz[e iff ClITell] U 12.3

..

T_T: A" = A,

If T'F e =gy € : T, then - | [[TT] + [TerT] = [TexTl = [T77]

VEC (D)= (1) e CHTERILD = (-] +31)
U iff Clea] U | C[[TeiTIT U iff C[ITeaTI] U

If

é(Statefulness can be purely emulated

--

 Givent C: (| [TTTI;[T2T]) = (- | - ;1), there exists a context - C ()= (-50).
ThIS is a valid emulation, i.e. for alll' + e : T we have: 5

Cz[e iff ClITell] U 12.4

..

¢ Statefulness can be purely emulated

13

¢ Statefulness can be purely emulated

{(A stateful computation is like a state
transformer, that is, a function from an
initial state to a final state. It is like a
"script” detailing the actions to be
performed on its input state...

Lazy Functional State Threads

John Launchbury and Simon L Peyton Jones
University of Glasgow
Email: {simonpj,j1}@dcs.glasgow.ac.uk Phone: +44-41-330-4500

March 10, 1994

Abstract

Some algorithms make critical internal use of updatable
state, even though their external specification is purely
functional. Based on earlier work on monads, we present
a way of securely encapsulating stateful computations
that manipulate multiple, named, mutable objects, in the
context of a non-strict, purely-functional language.

The security of the encapsulation is assured by the type
system, using parametricity. Intriguingly, this para-
metricity requires the provision of a (single) constant with
a rank-2 polymorphic type.

A shorter version of this paper appears in the Proceedings
of the ACM Conference on Programming Languages De-
sign and Implementation (PLDI), Orlando, June 1994.

1 Introduction

Purely functional programming languages allow many al-
gorithms to be expressed very concisely, but there are a
few algorithms in which in-place updatable state seems
to play a crucial role. For these algorithms, purely-
functional languages, which lack updatable state, appear
to be inherently inefficient (Ponder, McGeer & Ng [1988]).

‘ake, for example, algorithms based on the use of
incrementally-modified hash tables, where lookups are in-
terleaved with the insertion of new items. Similarly, the
union/find algorithm relies for its efficiency on the set
representations being simplified each time the structure
is examined. Likewise, many graph algorithms require a
dynamically changing structure in which sharing is ex-
plicit, so that changes are visible non-locally.

There is, furthermore, one absolutely unavoidable use of
state in every functional program: input/output. The
plain fact of the matter is that the whole purpose of run-
ning a program, functional or otherwise, is to make some
side effect on the world an update-in-place, if you

the world state.

We use the term “stateful” to describe computations or
algorithms in which the programmer really does want to
manipulate (updatable) state. What has been lacking
until now is a clean way of describing such algorithms
in a functional language — especially a non-strict one
without throwing away the main virtues of functional lan-
guages: independence of order of evaluation (the Church-
Rosser property), referential transparency, non-strict se-
mantics, and so on.

In this paper we describe a way to express stateful al-
gorithms in non-strict, purely-functional languages. The
approach 1s a development of our earlier work on monadic
I/O and state encapsulation (Launchbury [1993]; Pey-
ton Jones & Wadler [1993]), but with an important tech-
nical innovation: we use parametric polymorphism to
achieve safe encapsulation of state. It turns out that this
allows mutable objects to be named without losing safety,
and it also allows input foutput to be smoothly integrated
with other state mainpulation.

The other important feature of this paper is that it de-
scribes a complete system, and one that is implemented
in the Glasgow Haskell compiler and freely available. The
system has the following properties:

e Complete referential transparency is maintained. At
first it is not clear what this statement means: how
can a stateful computation be said to be referentially

transparent? To be more prcciscmﬂ'ul compu-
tation is a state transformer, that is, n {rom
an nitial state to a final is i e
ctailing the actions to be performed on its input
state) Like any other function, it is quite possible to

apply a single stateful computation to more than one
input state.

So, a state transformer is a pure function. But, be-
cause we guarantee that the state is used in a single-
threaded way, the final state can be constructed by

1

B8.1

¢ Statefulness can be purely emulated

{(A stateful computation is like a state
transformer, that is, a function from an
initial state to a final state. It is like a
"script” detailing the actions to be
performed on its input state...

University of Glasgow

March 10, 1994

Abstract

the world state.

Some algorithms make critical internal use of updatable
" " ol 1 +l -~ " 1 il -~ . 1

aloorithms in which th

Lazy Functional State Threads
John Launchbury and Simon L Peyton Jones

Email: {simonpj, j1}@dcs.glasgow.ac.uk Phone: +44-41-330-4500

We use the term “stateful” to describe computations or

programmer really does want to

Monads for functional programming

Philip Wadler, University of Glasgowx

Department of Computing Science, University of Glasgow, G12 8Q(), Scotland
(wadler@dcs.glasgow.ac.uk)

Abstract. The use of monads to structure functional programs is de-

scribed ! ide a convenient framework for simulating effects
found in . as global state, exception handling, out-

put, or non-determinism. Three case studies are looked at in detail: how
monads ease the modification of a simple evaluator; how monads act as
the basis of a datatype of arrays subject to in-place update; and how
monads can be used to build parsers.

1 Introduction

Shall I be pure or impure?

The functional programming community divides into two camps. Pure lan-
guages, such as Miranda” and Haskell, are lambda calculus pure and simple.
Impure languages, such as Scheme and Standard ML, augment lambda calculus
with a number of possible effects, such as assignment, exceptions, or continu-
ations. Pure languages are easier to reason about and may benefit from lazy
evaluation, while impure languages offer efficiency benefits and sometimes make
possible a more compact mode of expression.

Recent advances in theoretical computing science, notably in the areas of type
theory and category theory, have suggested new approaches that may integrate
the benefits of the pure and impure schools. These notes describe one, the use
of monads to integrate impure effects into pure functional languages.

The concept of a monad, which arises from category theory, has been applied
by Moggi to structure the denotational semantics of programming languages [13,

141 Tha cama tarhnimie cran ha annliad +a etrmetiire fnmetinnal nracrame 921

) state. What has been lacking
Fay of describing such algorithms
e — especially a non-strict one

the main virtues of functional lan-
f order of evaluation (the Church-
ntial transparency, non-strict se-

ibe a way to express stateful al-
purely-functional languages. The
ent of our earlier work on monadic
lation (Launchbury [1993]; Pey-
93]), but with an important tech-
1se parametric polymorphism to
ion of state. It turns out that this
to be named without losing safety,
/output to be smoothly integrated
ulation.

Pature of this paper is that it de-
em, and one that is implemented
compiler and freely available. The
g properties:

al transparency is maintained. At
what this statement means: how
»utation be said to be referentially

e more prccisc%fomfu—
insformer, that is, 1 {rom
a final is i e

ns to be performed on its input

er function, it is quite possible to
bful computation to more than one

rmer is a pure function. But, be-
B that the state is used in a single- 1

final state can be constructed by

8.2

{(In the state monad, a computation
accepts an initial state and returns a value
paired with the final state.

¢ Statefulness can be purely emulated

{(A stateful computation is like a state
transformer, that is, a function from an
initial state to a final state. It is like a
"script” detailing the actions to be
performed on its input state...

Lazy Functional State Threads

John Launchbury and Simon L Peyton Jones
University of Glasgow
Email: {simonpj,j1}@dcs.glasgow.ac.uk Phone: +44-41-330-4500

March 10, 1994

Abstract the world state.
Some algorithms make critical internal use of updatable We MSE theAtermA “stateful” to describe computations or
e | 1 41 - i 1 b d . 1 HID‘[]I'IIIII]] 2 111 \‘l-'h]['l] I]W prug’rallllller leal]}’ (ioes \‘\"ﬂ[ll ‘[0
. .) state. What has been lacking
Monads for functional programiming fay of describing such algorithms
e — especially a non-strict one
2.8 Variation two, revisited: State the main virtues of functional lan-
f order of evaluation (the Church-
ntial transparency, non-strict se-
nd
In the s a computation accepts an initial state and returns a value ihe & way t(? cxpress btaFEflll al-
—_—% purely-functional languages. The
paired with the Iin Al ent of our earlier work on monadic
lation (Launchbury [1993]; Pey-
93]), but with an important tech-
type Ma = State — (a. State) xse] parametric polymorphism to
type State = Int ion of state. It turns out that this
unit ta—Ma to be named without losing safety,
unit a = Az.(a,z) /output to be smoothly integrated
(%) i Ma—(a— Mb)— Mb uakien,
mxk =Az.let (a,y)=mz in bature of this paper is that it de-
let (b,z)=kay in em, and one that is implemented
(b, z) compiler and freely available. The
tick M) g properties:
tick =Xz ((),z+ 1) . lan-
al transparency is maintained. At
mple. :
leulus what this statement means: how
The call unit a returns the computation that accept initial state = and returns . butation be said to be referentially
value ¢ and final state «; that is, it returns ¢ and leaves the state unchanged. ntImu-r e more prccisc%ulfonlpu-
The call m % k performs computation m in the initial state z, yielding value a ey insformer, that is, n {rom
and intermediate state y; then performs computation £ a in state y, yielding make a final is li &
value b and final state z. The call tick increments the state, and returns the bns to be performed on its input
empty value (), whose type is also written (). ft_v;ze er Tunction, it is quite possible to
borate | sk
In an impure language, an operation like tick would be represented by a 1: use ful computation to more than one
function of type () — (). The spurious argument () is required to delay the effect))
until the function is applied, and since the output type is () one may guess that |)ieq rmer is a pure function. But, be-
the function’s purpose lies in a side effect. In contrast, here tick has type M (): |q (13 P lthal the state is used in a single- 4
no spurious argument is needed, and the appearance of M explicitly indicates : r9‘1 ’ final sta'te Eha bf’__.c?m,tfu,ﬁed_ by

8.3

ST computations by State Monad?

(STXB) =H — B x H

14

ST computations by State Monad?

(STXB) =H — B x H

Given+ C: (- | [TTT1;[TeT]) = (- | -3 1), there exists a context - C} : (I;7) = (-3 1). |
. This is a valid emulation, i.e. for allT + e : 7 we have: |

Cilel U iff C[ITeTl] U

141

ST computations by State Monad?

(ST X B)) = @ — B x\H

Givent C: (- | [TTT1;[T2T]) = (- | -3 1), there exists a context - C} : (I;7) = (-3 1). |
. This is a valid emulation, i.e. for allT + e : 7 we have: |

Cilel U iff C[ITeTl] U

14.2

ST computations by State Monad?

(ST X B)) = @ — B xH

Givent C: (- | [TTT1;[T2T]) = (- | -3 1), there exists a context - C} : (I;7) = (-3 1). |
This is a valid emulation, i.e. for allT + e : T we have: ’

Cilel U iff C[ITeTl] U

14.3

ST computations by Untyped State Monad

(ST X B)) = UntypedStore — UntypedStore X B

15

ST computations by Untyped State Monad

(ST X B)) = UntypedStore — UntypedStore X B

& @ List Val — Val
E(Lvis va; v3]) = ((vs, (v2, (v1,()))), 3)

15.1

ST computations by Untyped State Monad

(ST X B)) = UntypedStore — UntypedStore X B

& @ List Val — Val
E(Lvis va; v3]) = ((vs, (v2, (v1,()))), 3)

read zE(V) =" (E(V) v.z) if0<z<|v|
ref vEW) =" (EV+H[v]) .|IV])
writezv E(V) =" (ENV[z— v]), () if0 <z < |V

15.2

Decomposing the syntactic-typing problem

16

Decomposing the syntactic-typing problem

Milner Award Lecture The Type Soundness Theorem That You
Really Want to Prove (and Now You Can)

Derek Dreyer

Semantic typing

'=e: A

Intuition:
e behaves safely when used at the type A

Decomposing the syntactic-typing problem

Milner Award Lecture The Type Soundness Theorem That You
Really Want to Prove (and Now You Can)

Derek Dreyer

Semantic typing

'=e: A

Intuition:

e behaves safely when used at the type A

=9 ((Stateful contexts can be emulated by pure, syntactically-typed contexts

Givent C: (- | [TTT; [TeT1) = (- | - 31), there exists a context+ C',: (T;7) = (-3 1). |
This is a valid emulation, i.e. for allT + e : 7 we have: i

Cylel U iff C[ITeTl] U

__

17

=9 ((Stateful contexts can be emulated by pure, syntactically-typed contexts

Givent C: (- | [TTT; [TeT1) = (- | - 31), there exists a context+ C',: (T;7) = (-3 1). |
This is a valid emulation, i.e. for allT + e : 7 we have: i

Cylel U iff C[ITeTl] U

__

¥ ((Stateful contexts can be emulated by pure, semantically-typed contexts

Givent C: (- | [[TTI; [Tz]]) = (- [-5 1), there exists ki, C) 2 (I;7) = (-5 1).
This is a valid emulation, i.e. forallT' F e : 7:

Cilel U iff C[ITeTl1 U

171

=9 ((Stateful contexts can be emulated by pure, syntactically-typed contexts

Givent C: (- | [TTT; [TeT1) = (- | - 31), there exists a context+ C',: (T;7) = (-3 1). |
This is a valid emulation, i.e. for allT + e : 7 we have: i

Cylel U iff C[ITeTl] U

__

¥ ((Stateful contexts can be emulated by pure, semantically-typed contexts

Givent C: (- | [[TTI; [Tz]]) = (- [-5 1), there exists ki, C) 2 (I;7) = (-5 1).
This is a valid emulation, i.e. forallT' F e : 7:

Cilel U iff C[ITeTl1 U

= (¢ Pure, semantically-typed contexts can be emulated by pure, syntactically-typed contexts

Given ki C : (I';7) = (-5 1), there exists + CZ (1) = (45 7).
This is a valid emulation, i.e. for allT' + e : 7 we have:

Cylel U iff Cle] U

17.2

=9 ((Stateful contexts can be emulated by pure, syntactically-typed contexts

Givent C: (+| [TTT; [TeT]) = (- | -5 1), there exists a context+ C',: (T;7) = (-31). |
This is a valid emulation, i.e. for allT + e : 7 we have: i

Cylel U iff C[ITeTl] U

__

¥ ((Stateful contexts can be emulated by pure, semantically-typed contexts

Givent C: (- | [[TTI; [Tz]]) = (- [-5 1), there exists ki, C) 2 (I;7) = (-5 1).
This is a valid emulation, i.e. forallT' F e : 7:

Cilel U iff C[ITeTl1 U

= (¢ Pure, semantically-typed contexts can be emulated by pure, syntactically-typed contexts

Given ki C : (I';7) = (-5 1), there exists + CZ (1) = (45 7).
This is a valid emulation, i.e. for allT' + e : 7 we have:

Cylel U iff Cle] U

17.3

Defining Semantic Typedness

I'Ejpp e 1

Iris

18

Defining Semantic Typedness

'Egree:r

Iris

18.1

Logical Relations on Values

Vine [N (v, V) 2v=() =V =()

Vine [[BII (v, v") 2 3b € {true, false}.v=>5bx=v' =b

VirlZN(v,v) 23z €Z.v=zxVv =z
Vinllrrrl (o) 2\ Bww'ov = in, we v/ = inj, w’x Vi [[71](w, w)

ie{1,2}
Vit [[T1XT2]] (v, v') 2 vy, v, vo, Vi v = (vi,vp) %V = (Vi,v))
Vi [[71]] (Vh V;) * Vipe [[72]] (va, Vé)
Vim0l (v, V') = (VW, W Vi [1w, w') = it Vi [[72]] (v w, v/ W,))
Vine LX) (v, v) £ 3w, w'. v =fold w = v = fold W’ s>V, [[[X 7 /X]]] (W, W)

19

Logical Relations on Closed Expressions

lift : (Val — Val — iProp) — (Expr — Expr — iProp)
lift ® (e,e’) =wpe {v. v e’ ="V x D(y, V’)}

gint. [[T]] = lift (vint. [[T]]

20

Logical Relations on Open Expressions

A

FEjre<e :r1

VO,V Vi [T V) F S [[21] e[V /%], ' [V /X'])

21

Adequacy/Fundamental Theorem

LEMMA 2.1 (LOoGICAL RELATION ADEQUACY). If - ki e < e’ : 1, then if e halts to a value, so
must e’.

THEOREM 2.2 (FUNDAMENTAL THEOREM INTERMEDIATE LANGUAGE). For any well syntactically
typed expression (in A"), say I' + e : 7, we automatically have that " E;,; e : 7.

22

= (¢ Pure, semantically-typed contexts can be emulated by pure, syntactically-typed contexts

Given ki C: (I';7) = (-3 1), there exists + CE () = (-5 1),
This is a valid emulation, i.e. for allT' + e : 7 we have:

Cylel U iff Cle] U

23

Fint. C : (X1 3T1,---,Xn3Tn§T) :>(‘;1)

24

Eint C: (X171, %0 T3 7) = (-3 1) \

U=pX.(1T+B+Z+(X+X)+(XXX)+ (X = X)+puY.X)

—/

241

Eine C: (X1 :71,00 X i T3 7) = (-5 1

Fully Abstract Compilation via Universal Embedding *

Max S. New William J. Bowman

Northeastern University, USA
maxnew@ccs.neu.edu

Abstract

A fuily abstract compiler guarantees that two source components
are observationally equivalent in the source language if and only if
their translations are observationally equivalent in the target. Full
abstraction implies the translation is secure: target-language attack-
ers can make no more observations of a compiled component than a
source-language attacker interacting with the original source compo-
nent. Proving full abstraction for realistic compilers is challenging
because realistic target languages contain features (such as control
effects) unavailable in the source, while proofs of full abstraction
require showing that every target context to which a compiled com-
ponent may be linked can be back-rransiared to a behaviorally
equivalent source context.

‘We prove the first full abstraction result for a translation whose
target language contains exceptions, but the source does not.
Our translation—specifically, closure conversion of simply typed
A-calculus with recursive types—uses types at the target level to
ensure that a compiled component is never linked with attackers
that have more distinguishing power than level attackers. We
present a new back-translation technique based on a shallow embed-
ding of the target language into the source language at a dynamic

Northeastern University, USA
wjb@williamjbowman.com

Amal Ahmed

Northeastern University, USA
amal@ccs.neu.edu

attacker—i.e., any code that their software component might be
linked with—will be bound by the rules of the programming
language. However, after the component is compiled, it may be
linked with arbitrary target-level attackers that violate source-level
abstractions, thus invalidating source-level security guarantees.
Target attackers may be able to do things impossible in the source,
such as read the compiled component’s private data. modify the
component’s control flow, and even modify code implementing the
component's methods.

To guarantee that target attackers respect source-language rules,
a compiler must be fully abstraci—that is, it should preserve and
reflect observational equivalence [T 1L [, [TA, (30, [T [T4). We use
the standard notion of observational equivalence. also known as
coniextual equivalence: two components are contextually equivalent
if they are indistinguishable in any valid (appropriately typed)
program context. Fully abstract compilation ensures that when a
source component e compiles to a target component e a valid target-
language context C (attacker) does not have the power to observe
anything more from interacting with e than a source-language
context C interacting with e. Note that ensuring fully abstract
compilation is only important when compiling cenpenents (not
- . ~

U=pX(1T+B+Z+(X+X)+ (XXX)+ (X—=X)+puY.X)

24.2

Eine C: (X1 :71,00 X i T3 7) = (-5 1

U=pX(1T+B+Z+(X+X)+ (XXX)+ (X—=X)+puY.X)

Fully Abstract Compilation via Universal Embedding *

Abstr

A fully
are obs:
their tr:
abstract]
ers can
source-|
nent. Pif
becausq
effects)|
require
ponent
equival
We
target ||
Our trai
A-calcul
ensure
that hay
present

ding of

Fully-Abstract Compilation by Approximate Back-Translation

Dominique Devriese

Marco Patrignani

*

Frank Piessens

iMinds-Distrinet, KU Leuven, Belgium
first.last @ cs.kuleuven.be

Abstract

A compiler is fully-abstract if the compilation from source lan-
guage programs to target language programs reflects and preserves
behavioural equivalence. Such compilers have important security
benefits, as they limit the power of an attacker interacting with the
program in the target language to that of an attacker interacting
with the program in the source language. Proving compiler full-
abstraction is, however. rather complicated. A common proof tech-
nique is based on the back-rranslarion of target-level program con-
texts to behaviourally-equivalent source-level contexts. However,
constructing such a back-translation is problematic when the source
language is not strong enough to embed an encoding of the target
language. For instance. when compiling from the simply-typed A-
calculus (A7) to the untyped A-calculus (A"), the lack of recursive
types in A" prevents such a back-translation.

‘We propose a general and elegant solution for this problem. The
kev insieht is that it suffices to construct an approximate back-

1. Introduction

A compiler is fully-abstract if the compilation from source lan-
guage programs to target language programs preserves and reflects
behavioural equivalence [Abadi, 1999, Gorla and Nestman, 2014].
Such compilers € important security benefits. It is often real-
istic to assume that attackers can interact with a program in the
target language. and depending on the target language this can en-
able attacks such as improper stack manipulation, breaking con-
trol flow guarantees, reading from or writing to private memory of
other components, inspecting or modifying the implementation of a
function etc. [Abadi, 1999, Kennedy, 2006, Patrignani et al., 2015,
Abadi and Plotkin, 2012, Fournet et al., 2013, Agten et al., 2012].
A fully-abstract compiler is sufficiently defensive to rule out such
attacks: the power of an attacker interacting with the program in the
target language is limited to attacks that could also be performed by
an attacker interacting with the program in the source language.
Formallv. we model a compiler as a function 1 that maps

24.3

I:int.C:(X1 3T1,---,Xn3Tn§T) :>(‘;1)

U=pX(1T+B+Z+(X+X)+ (XXX)+ (X—=X)+puY.X)

Fully Abstract Compilation via Universal Embedding *

Abstr

A fully
are obs:
their tr:
abstract]
ers can
source-|
nent. Pr
becausq
effects)|
require
ponent
equival
We
target ||
Our trai
A-calcul
ensure
that hay
present

ding of

Fully-Abstract Compilation by Approximate Back-Translation

Abs

A colf
guagd
beha
benef]
progi
with
abslr:
nique|
texts
const]
lang!
lan;
calcul
types|

kev il

Fully Abstract from Static to Gradual

KOEN JACOBS, imec-DistriNet, KU Leuven, Belgium
AMIN TIMANY, Aarhus University, Denmark
DOMINIQUE DEVRIESE, Vrije Universiteit Brussel, Belgium

What is a good gradual language? Siek et al. have previously proposed the refined criteria, a set of formal ideas
that characterize a range of guarantees typically expected from a gradual language. While these go a long way,
they are mostly focused on syntactic and type safety properties and fail to characterize how richer semantic
properties and reasoning principles that hold in the static language, like non-interference or parametricity for
instance, should be upheld in the gradualization.

In this paper, we investigate and argue for a new criterion previously hinted at by Devriese et al.: the
embedding from the static to the gradual language should be fully abstract. Rather than preserving an arbitrarily
chosen interpretation of source language types, this criterion requires that all source language equivalences
are preserved. We demonstrate that the criterion weeds out erroneous gradualizations that nevertheless
satisfy the refined criteria. At the same time, we demonstrate that the criterion is realistic by reporting on 4

24.4

a mechanized proof that the property holds for a standard example: GTLC,,, the natural pradualization of

Fine. C: (X7, .. %0t 7) = (+51)

U=pX(1T+B+Z+(X+X)+ (XXX)+ (X—=X)+puY.X)

Fully Abstract Compilation via Universal Embedding *

Fully-Abstract Compilation by Approximate Back-Translation

Fully Abstract from Static to Gradual

abstr] |K{On the Semantic Expressiveness of Recursive Types
A fully

A
are obs: D
;',‘Di'l‘;:; Abs MARCO PATRIGNANI, Stanford University, USA and CISPA Helmholtz Center for Information Security,
ers can{ A cof W/ Germany

vent 7| behey tB ERIC MARK MARTIN, Stanford University, USA

nent. Pr| beha
becausq benef] th .. . oy s .

effects)| progt DOMINIQUE DEVRIESE, Vrije Universiteit Brussel, Belgium
require | with Pl’ X)) . .
ponent | abstr ind Recursive types extend the simply-typed lambda calculus (STLC) with the additional expressive power to
s ! :':ilf enable diverging computation and to encode recursive data-types (c.g., lists). Two formulations of recursive
target || const|en| types exist: iso-recursive and equi-recursive. The relative advantages of iso- and equi-recursion are well-
?:lr&!i ::i‘f ch| studied when it comes to their impact on type-inference. However, the relative semantic expressiveness of the
ensure { calou] 41§ two formulations remains unclear so far.
thathav) types| cal This paper studies the semantic expressiveness of STLC with iso- and equi-recursive types, proving 4|5

present . | X
ding of kev“: a 1 these formulations are equally expressive. In fact, we prove that they are both as expressive as STLC with

(71 e)) = my (extracty ((e)))
extractg : U - (USQU)

Eine. C: (X107, X0 i T3 7) = (-5 1)

U=pX(1T+B+Z+(X+X)+ (XXX)+ (X—=X)+puY.X)

FUC) : (x1: U, ... % - U;U) = (-5;U)

Fully Abstract Compilation via Universal Embedding *

Fully-Abstract Compilation by Approximate Back-Translation

Fully Abstract from Static to Gradual

abstr] |K{On the Semantic Expressiveness of Recursive Types

Ay A
are obs: D
:“;'I‘;:;L Abs MARCO PATRIGNANI, Stanford University, USA and CISPA Helmholtz Center for Information Security,
arscan | A <ol W) Germany

vent 7| behey tB ERIC MARK MARTIN, Stanford University, USA

nent. Pr| beha
becs benef) .. i e .
;élcl::f progx th DOMINIQUE DEVRIESE, Vrije Universiteit Brussel, Belgium
require | with | T X)) . .
ponent | abstr ind Recursive types extend the simply-typed lambda calculus (STLC) with the additional expressive power to
equivald nique]
We || texts . N) A
target || const|en| types exist: iso-recursive and equi-recursive. The relative advantages of iso- and equi-recursion are well-
?T&;i :“ﬂE ch| studied when it comes to their impact on type-inference. However, the relative semantic expressiveness of the
-caleuf jang . .
ensure { cqlcu] ar{ two formulations remains unclear so far.
thathav) types| cal This paper studies the semantic expressiveness of STLC with iso- and equi-recursive types, proving 4|6

present . | X
ding of kev“: a 1 these formulations are equally expressive. In fact, we prove that they are both as expressive as STLC with

enable diverging computation and to encode recursive data-types (c.g., lists). Two formulations of recursive

(71 e)) = my (extracty ((e)))
extractg : U - (USQU)

Fint. C 1 (X1 171, Xy 1 T3 7) = (5 1)
U=pX(1T+B+Z+(X+X)+ (XXX)+ (X—=X)+puY.X)

FUC) : (x1: U, ... % - U;U) = (-5;U)

project, : U — 1

em bed r T — 7/[Fully Abstract Compilation via Universal Embedding *

Fully-Abstract Compilation by Approximate Back-Translation

Fully Abstract from Static to Gradual

abstr] |K{On the Semantic Expressiveness of Recursive Types

Ay A
are obs: D
:“:S'I‘;;;L Abs MARCO PATRIGNANI, Stanford University, USA and CISPA Helmholtz Center for Information Security,
ers can{ A cof W/ Germany

vent 7| behey tB ERIC MARK MARTIN, Stanford University, USA

nent. Pr| beha
becs benef) .. i e .
;élcl::f progx th DOMINIQUE DEVRIESE, Vrije Universiteit Brussel, Belgium
require | with | T X)) . .
ponent | abstr ind Recursive types extend the simply-typed lambda calculus (STLC) with the additional expressive power to
equivald nique]
We || texts . N) A
target || const|en| types exist: iso-recursive and equi-recursive. The relative advantages of iso- and equi-recursion are well-
?T&;i :“ﬂE ch| studied when it comes to their impact on type-inference. However, the relative semantic expressiveness of the
-caleu) jang . .
ensure { cqlcu] ar{ two formulations remains unclear so far.
thathav) types| cal This paper studies the semantic expressiveness of STLC with iso- and equi-recursive types, proving 4|7

present . | X
ding of kE‘_.“: a 1 these formulations are equally expressive. In fact, we prove that they are both as expressive as STLC with

enable diverging computation and to encode recursive data-types (c.g., lists). Two formulations of recursive

(71 e)) = my (extracty ((e)))
extractg : U - (USQU)

Fint. C 1 (X1 171, Xy 1 T3 7) = (5 1)
U=pX(1T+B+Z+(X+X)+ (XXX)+ (X—=X)+puY.X)

FUC) : (x1: U, ... % - U;U) = (-5;U)

project, : U — 1

em bed r T — 7/[Fully Abstract Compilation via Universal Embedding *

Fully-Abstract Compilation by Approximate Back-Translation
F %@ << C >> ' (r 3 T) (’ 1) Fully Abstract from Static to Gradual

abstr] |K{On the Semantic Expressiveness of Recursive Types

A fully
are obs:
:“:S'I‘;;;L Abs MARCO PATRIGNANI, Stanford University, USA and CISPA Helmholtz Center for Information Security,
ers can{ A cof W/ Germany

vent 7| behey tB ERIC MARK MARTIN, Stanford University, USA

nent. Pr| beha
becs benef) .. i e .
;élcl::f progx th DOMINIQUE DEVRIESE, Vrije Universiteit Brussel, Belgium
require | with | X)) . .
ponent | abstr ind Recursive types extend the simply-typed lambda calculus (STLC) with the additional expressive power to
equivald nique]

We || texts . N) A
target || const|en| types exist: iso-recursive and equi-recursive. The relative advantages of iso- and equi-recursion are well-
?T&;i :“ﬂE ch| studied when it comes to their impact on type-inference. However, the relative semantic expressiveness of the

-caleu) jang . .
ensure { calcy wo formulations remains unclear so far.
ar{ two f lat it f:

thathav) types| cal This paper studies the semantic expressiveness of STLC with iso- and equi-recursive types, proving 4|8

present . | X
ding of kE‘_.“: a 1 these formulations are equally expressive. In fact, we prove that they are both as expressive as STLC with

o >

enable diverging computation and to encode recursive data-types (c.g., lists). Two formulations of recursive

= {((Pure, semantically-typed contexts can be emulated by pure, syntactically-typed contexts

Given kin, C: (I';7) = (-5 1), there exists+ C, : (I's7) = (-5 1),
This is a valid emulation, i.e. for allT + e : 7 we have:

T Cile] I iff Cle] U

G

25

= (¢ Pure, semantically-typed contexts can be emulated by pure, syntactically-typed contexts

Given kin, C: (I';7) = (-5 1), there exists+ C, : (I's7) = (-5 1),
This is a valid emulation, i.e. for allT" + e : T we have:

T Cilel U iff Cle] U

G

Our proof does not assume a fixed set of ghost resources!

25.1

5y ((Stateful contexts can be emulated by pure, semantically-typed contexts

Givent C: (- | [[T]l; [Tz]]) = (- | = 51), there exists k. C} : (I's7) = (-5 1).
This is a valid emulation, i.e. forallT' e : 7:

Cilel U iff C[ITeTl1 U

26

5y ((Stateful contexts can be emulated by pure, semantically-typed contexts

Givent C: (- | [[T]l; [Tz]]) = (- | = 51), there exists k. C} : (I's7) = (-5 1).
This is a valid emulation, i.e. forallT' e : 7:

Cilel U iff C[ITeTl1 U

read zE(V) =" (EW) v.z) if0<z<|v|
ref vEWV) =" (EV+[v]) .|IV])
writezv E(V) =" (EN[zH— v]), () ifo<z< |V

& ¢ List Val — Val
E(Lvi; va; v3]) = ((vs, (v2, (v1,()))), 3)

26.1

5y ((Stateful contexts can be emulated by pure, semantically-typed contexts

Givent C: (- | [[T]l; [Tz]]) = (- | = 51), there exists k. C} : (I's7) = (-5 1).
This is a valid emulation, i.e. forallT' e : 7:

Cilel U iff C[ITeTl1 U

read z E(V) = (E(V) v.z) if0<z<|v|
ref vEWV) =" (EV+[v]) .|IV])
writezv E(V) =" (EN[zH— v]), () ifo<z< |V

& ¢ List Val — Val
E(Lvi; va; v3]) = ((vs, (v2, (v1,()))), 3)

{(e)) = read ((e))
(e « e’)) = write ((e)) (e’))
((ref e)) = ref ((e))
(e 3= e’)) = (Ax. Af. Ahy. let (hy,a) = x hg in f a hy) (&) (&)

26.2

Givent C: (« | [[TT]; [Tz]]) = (- [-5 1), there exists ki, C) 2 (I;7) = (-5 1).
This is a valid emulation, i.e. for allT' + e : 7: D \

Cilel U iff CIITeTI U

Given +C:(-|[[TT;[T]) = (-]-;1),
to prove ki (C)) < {C)):(T57) = (-31)

27

Givent C: (« | [[TT]; [Tz]]) = (- [-5 1), there exists ki, C) : (I;7) = (-5 1).
This is a valid emulation, i.e. for allT' + e : 7: D \

Cilel U iff CIITeTI U

Given FC: ([T = (-]-31),
to prove ki (C) < (C): (Ii1) = (+51)

C FEpre<e :r

S|l TeExe<e :7

27.1

Givent C: (« | [[TT]; [Tz]]) = (- [-5 1), there exists ki, C) : (I;7) = (-5 1).
This is a valid emulation, i.e. for allT' + e : 7: D \

Cilel U iff CIITeTI U

Given FC: ([T = (-]-31),
to prove ki (C) < (C): (Ii1) = (+51)

C FE;pe<e :rT

S|l TeExe<e :7

W Tepe<e :r4r - |[[TT exe<e :[[r]]

27.2

Givent C: (« | [[TT]; [Tz]]) = (- [-5 1), there exists ki, C) : (I;7) = (-5 1).
This is a valid emulation, i.e. for allT' + e : 7: —_— \

Cilel U iff CIITeTI U

Given FC: ([T = (-]-31),
to prove ki (C) < (C): (Ii1) = (+51)

C FE;pe<e :rT

S|l TeExe<e :7

W TEpe<e :t4r -|[[TTexe<e :[[r]]

W VE|Tre:7, E|TEx {e) <{e):7

27.3

Givent C: (| [[CTl; [Tz1]) = (< | - ; 1), there exists Fiu; CZ ()= (-5 1).
This is a valid emulation, i.e. foralll' + e : 7: &

—
-—

Cilel U iff C[ITeTIT U

28

Givent C: (| [[CT]; [Tz]l) = (- | - ; 1), there exists Ejn; C'; (T;7) = (-5 1).
. This is a valid emulation, i.e. foralll' + e : 7: &

—
-—

Cilel U iff C[ITeTIT U

THEOREM 5.2 (FUNDAMENTAL THEOREM). Given a typed expression in Ag,, say = | I' - e : 7, we
have the following:
= Fege<{e): 1

28.1

Givent C: (| [[CT]; [Tz]l) = (- | - ; 1), there exists Ejn; C; (T;7) = (-5 1).
. This is a valid emulation, i.e. foralll' + e : 7: &

—-—
-—

Cilel U iff C[ITeTIT U

THEOREM 5.2 (FUNDAMENTAL THEOREM). Given a typed expression in Ag,, say = | I' - e : 7, we
have the following:
= Fege<{e): 1

LEMMA 5.3 (LoGICAL RELATION ADEQUACY). If- | - kg e < e’ : 7, then if e halts to a value, so
must e’.

28.2

OwnState, (V) + = OwnState, (V ++ [v]) * [V| >, v
OwnState, (V) * z >, VF V.z =V

OwnState, (V) * z =, v + = OwnState,(V[z = w]) * z =, w

29

OwnState, (V) + = OwnState, (V ++ [v]) * [V| >, v
OwnState, (V) * z >, VF V.z =V

OwnState, (V) * z =, v + = OwnState,(V[z = w]) * z =, w

OwnLocsy(f) - SOwnLocs},(f +H [£]) = |/] |—>E ¢

OwnLocs, (£) * z - Flz="¢
0 O O
zZ) fl—Zl—>Y t’*zl—>}, {

ZI—>E£’*Z|—>E£”I-£’:£”

29.1

OwnState, (V) + = OwnState, (V ++ [v]) * [V| >, v

OwnState, (V) * z >, VF V.z =V

OwnState, (V) * z =, v + = OwnState,(V[z = w]) * z =, w

OwnlLocs, (£) F

SOwnLocs},(? +H [£]) = |/] |—>E ¢

OwnLocs, (£) * z =2 tz=1¢

O | |
*k
zn—>yt’|-zl—>},t’ z|—>},t’

ZI—>E£’*ZI—>E£”I-£:£’

liftg : (Val — Val — iProp) — (Expr — Expr — iProp)
liftg © (e,e’) =wpe {V. v e’ =" v = D(v, v’)}

29.2

VR[[= + STRef X t]|a(v,V) £, z.v=FtxVv =z%xz2 HAD(X).I %

Jw, W > wxz a2 (W) * VRI[[EF 7]|a(w, w)

A(X).z

30

VR[[= + STRef X t]|a(v,V) £, z.v=FtxVv =z%xz2 HE(X) O

A(X).z

Fw, W = Wk z a2 (W) * Ve[[EF r]]a(w, w)

Ve[[Z F ST X t|a(v, V') 2 Ve, ;. |£;] = [Vi]. O (OwnLocsA(X),l(ﬂ;) * OwnStatep (x) 2(Vi) =
wp runST (v} {w. 3w/, 61,77 |71 = [T (v EG) =7 (E@F), W) »

OwnLocsy x) 1 (£7) * OwnStaten(x) 2 (V) * VR[[Z F t]la(w, W’)})

30.1

liftg : (Val — Val — iProp) — (Expr — Expr — iProp)
liftg @ (e,e’) =wpe {V. v e’ ="V xD(v, V’)}

31

liftg : (Val — Val — iProp) — (Expr — Expr — iProp)
liftg @ (e,e’) =wpe {V. v e’ ="V xD(v, V’)}

S| TeEge<e :7 %

VAV, VRIE FTTA(V) - ERIE F 2lla(e[3/V], e’ [X/V'])

31.1

https://github.com/scaup/sem_backs_st

32

A Personal Retrospective using Iris

33

Small distance between intuition and formalization

34

Sometimes existing abstractions are not sufficient

35

Sometimes existing abstractions are not sufficient

wp e {D}

35.1

Sometimes existing abstractions are not sufficient

wp e {D}

expressions are of finite depth

35.2

Sometimes existing abstractions are not sufficient

wp e {D}

expressions are of finite depth

35.3

Sometimes existing abstractions are not sufficient

wp e {D}

expressions are of finite depth

en=...|r>(e)
b>(w) o w if w=(),b,z t->(inj; v) —p inj; (F->(v))
->(inj, v) —p inj, (F->(v)) k> ((v1,v2)) —p (F2(vq), k2(v2))
> (Ax.e) —=p Ay ((Ax.+->(e)) +->(y)) F->(fold v) —p, fold (k->(v))

35.4

To do at some point in the future

- polymorphism
- stronger, more intuitive properties

- formalize wp to take advantage of finite expressions

36

Questions?

37

Extras
What is (isn't) the difficulty when adding polymorphsim?

38

* ¢ Stateful contexts can be emulated by pure, syntactically-typed contexts

* ¢ Stateful contexts can be emulated by pure, semantically-typed contexts
—

* é¢ Pure, semantically-typed contexts can be emulated by pure, syntactically-typed contexts

39

Extras

Well definedness of back-translation from stateful language into the
semantically typed language

40

Given +C: (| [[TT;[[z]) = (-]-;1),
to prove Ej (C) < {C) :(Iit) = (-51)

41

Given FC: (| [[TT[[z[D) = (-]-:1),
to prove Fiy. (C)) < (C)): (I57) = (-51)

C FEppe<e :r

S| TEexe<e :r

41.1

Given FC: (| [[TT[[z[D) = (-]-:1),
to prove Ei. (C) < (C)): (I57) = (+51)

([Ejpe<e :r

Z|TFexe<e :7

W Trpe<e 4 | [[TTExe<e :[[7]]

41.2

Given FC: (| [[TT[[z[D) = (-]-:1),
to prove Fiy. (C)) < (C)): (I57) = (-51)

C Fe;pe<e 1

S| TeExe<e :r

W Temes<e it | [ITExe<e : [l

W VE|Tre:7, 2|TEx {e) <{e):7

41.3

-/

OwnStates, (V,V') + = OwnStates, (V ++ [v], V' ++ [V']) = [V] >, (v,V')
OwnStates, (V,V') * z >, (v,V) FVz=vV.z =V

OwnStates, (V,V') * z >, (v,v') F = OwnStates, (V[z — w],V [z > W']) %z >, (w, W)

42

Vx[[Z+ ST X t]]a(v, V') £ W, V.. [(OwnStatesA(X)(Vi, V) = wpv E(V;) {(S(Vf),w). 33}, w’.

(v EWV) =" (8(?}), w’)) * OwnStatesp(x) (Vr, T/}) * Vx[[Z F 7]]a(w, w')})

(VX[[EFSTRefXT]]A(V,V’) = HZ.V:Z*V’ = 7 %

Fw, W'z a0 (W, W) * Vx[[Z F 2]]a(w, w)

A(X).z

S Texe<e it 2VAVV. V== « 3K Vx[[EF Lilla(V.i, Vi) +

0<i<|I'|

Exl[=F ellale[x/V]. " [x/V])

43

Extras

Existing wp not sufficient

44

lift : (Val — Val — iProp) — (Expr — Expr — iProp)
lift & (e,e’) =wpe {V. e ="V x D(v, V’)}

45

lift : (Val — Val — iProp) — (Expr — Expr — iProp)
lift & (e,e’) =wpe {v. v e’ =" v % (I)(V,v’)}

list Z 2 pX.14+(Z x X) f = map (Ax.x + 0)

45.1

lift : (Val — Val — iProp) — (Expr — Expr — iProp)
lift & (e,e’) =wpe {v. v e’ =" v % (I)(V,v’)}

list Z 2 pX.14+(Z x X) f = map (Ax.x + 0)

YV ine [[list Z—list Z] (Ax.x, f)

45.2

lift : (Val — Val — iProp) — (Expr — Expr — iProp)
lift & (e,e’) =wpe {v. v e’ =" v % (I)(V,v’)}

list Z 2 pX.14+(Z x X) f = map (Ax.x + 0)

YV ine [[list Z—list Z] (Ax.x, f)
Ve Vi [llist ZI (v v') ¥ S [llist ZT((Ax) v,)

45.3

lift : (Val — Val — iProp) — (Expr — Expr — iProp)
lift & (e,e’) =wpe {v. v e’ =" v % (I)(V,v’)}

list Z £ pX. 1+(Z X X) f = map (Ax.x + 0)

YV ine [[list Z—list Z] (Ax.x, f)
VoV Vi [list Z (V) ¥ Eme [[list ZT(Axx) v, V')

(Ax.x) [1,2,3,4] f 1,2, 3, true]

45.4

Extras

Proving that emulations of semantically-typed into syntactically-typed is well
behaved

46

= ((Pure, semantically-typed contexts can be emulated by pure, syntactically-typed contexts

Given kin, C: (I';7) = (-5 1), there exists+ C, : (I's7) = (-5 1),
This is a valid emulation, i.e. for allT' + e : 7 we have:

Cylel U iff Cle] U

>

47

V. :Val — Val — iProp
Vo(v,v') = (v= injected Y3 (()) * v/ = ()
V(3b € {true, false}. v = injected)® (b) * v/ = b)
V(3z € Z.v = injectedy?! (2) * v/ = 2)
(

Jw, w’. \/ (v= injected:fal(inji w) V' =inj. w’ * l>(V?(w,W’))
ie{1,2}

V(Ivy, v, vy, Vo v = injected;ﬁal((v;,v;)) x v = (V],v5) x> Vo (v, V) x> Vo (v, v)h))
V(Je.v = injected " (Ax.e) = > O(VYw, w'. Vo (w, w’) = lift V> (e[w/x],V’ w))
V(Iw,w'v = injectedval(fold w) x v’ = fold w’ x> Vs (w,w’))

<

Eo(e€’) Eint[[7]l (e, e’)
Sint. ([l (project, e,e’) E-(embed; e, €’)

48

= ((Pure, semantically-typed contexts can be emulated by pure, syntactically-typed contexts

Given kin, C: (I';7) = (-5 1), there exists+ C, : (I's7) = (-5 1),
This is a valid emulation, i.e. for allT' + e : 7 we have:
C,lel U iff Cle] U

49

8&(e,e’%

mpmjectf e’)

E. (ee)

St Il 7] (assert, e, project, e”)

mt [[

r]l(e €)

Sint. [[7]I (+->(e), guard. e’)

8int. [

7]l (e, e’)

8int. [[T:

1(e,r->(e"))

Eume [l (o)

bed,e’)

znt [[]] (e €)

&, (guard; e,

embed; e”)

Sint [[7]l (e, €")

Eint [[7]1(+->(e), assert, ')

Sint. [

7]l (e, e’)

Sint [[7]1 (e, ->(e"))

