
Léon Gondelman &
Jonas Kastberg Hinrichsen

Verifying Reliable Sessions Over an Unreliable
Network in Distributed Separation Logic

The Second Iris Workshop
May 2, 2022

https://jihgfee.github.io/

I. Reliable Communication in
 Distributed Systems

Communicating processes

• Network communication & message-passing concurrency: 
 
> coordination is done via exchanging messages (not via shared memory) 
 
> communication protocols and resource transfer play central role 

Fundamental Difference

• Communication over the network is fundamentally unreliable and asynchronous: 
  
> messages are lost, arrive out of order, got duplicated, or forged by adversary 
 
> messages arrive from one machine to another with a certain delay 
 
> network partitions make it impossible to distinguish, in a finite amount of time, 
 between delayed messages and lost messages (e.g. due to remote's crash) 

Fault Tolerance

• Transport layer protocols such as TCP, SCTP and others 
provide some reliability guarantees (at-most-once in-order delivery).

• However, no protocol can guarantee that messages will arrive in-order &
without duplicates exactly once.

• In the presence of network partitions/broken connections, TCP is no 
better than UDP: in fine, reliability is achieved at the application level.

• Many reasons to build fault-tolerance on top of UDP: 
> gaming community, Google QUIC (2013), Ensemble (Haiden 98)

Verification Perspective

> Assume fault-tolerance to reason about high-level problems/algorithms: 
 map-reduce, deadlock freedom, op-based CRDTs, …

> Model network with faults to build fault-tolerance:  
 consensus algorithms, reliable causal broadcast, client-server sessions.

• Two research directions:

• Longstanding goal: a unified framework where high-level abstractions 
meet realistic fault-tolerant implementations. 

• The story of this work: one step towards this goal.

Key Observation (1/2)
• Actris Session Type-based Reasoning

> provides a high-level model of reliable communication (Actris Ghost Theory)

> has been applied so far only to reason about message-passing concurrency,  
 where the communication layer itself is reliable.

Key Observation (2/2)

(a) socket handle resource

• Aneris Distributed Separation Logic

> provides rules to reason about unreliable unconnected communication;

> had no native/library support for reliable/connected communication  
 (i.e. each time reliability/sessions had to be built in ad-hoc way).

Key Observation (2/2)
• Aneris Distributed Separation Logic

> provides rules to reason about unreliable unconnected communication;

> had no native/library support for reliable/connected communication  
 (i.e. each time reliability/sessions had to be built in ad-hoc way).

(b) message history resources

Key Observation (2/2)
• Aneris Distributed Separation Logic

> provides rules to reason about unreliable unconnected communication;

> had no native/library support for reliable/connected communication  
 (i.e. each time reliability/sessions had to be built in ad-hoc way).

(c) socket protocol predicate

Let Aneris and Actris projects meet to enable reasoning  
about reliable network communication!

…The rendez-vous point is our verified client-server library.

Our idea

II. The API of the library

�PDNH�VHUYHU��
VRFNHW�

&OLHQW�6HUYHU�6HVVLRQ�

UHFY

VHQG

VHQG

UHFY

FRQQHFW

PDNH¬FOLHQW�
VRFNHW�

OLVWHQ

DFFHSW

6WDUW�6HUYHU�&RQQHFW�&OLHQW�

&RQQHFWLRQ�5HTXHVW�

FKDQQHO�
GHVFULSWRU

FKDQQHO�
GHVFULSWRU

• BSD sockets-like primitives

• 4-handshake connection

• buffered bidirectional channels

• sequence-ids/acknowledgments/ 
 retransmission mechanisms

• ~ 350 lines of OCaml

• distinction between active/passive 
 sockets and channels

• data transfer of serialisable values

Our Library

OCaml API

Explicit distinction between active/passive
socket and channel descriptor datatypes

OCaml API

How client serialises values

to be send to the server

How server deserialises values

received from the client

OCaml API

How server serialises values

to be send to the client

How client deserialises values

received from the server

Example: echo server

III. Specification

Spec (1/4): Parameters & Resources

Spec (2/4): Client/Server Setup

Spec (2/4): Client/Server Setup

 Spec (3/4): Reliable Data Transfer

Spec (4/4) : Logical Setup

OCaml function Generated Coq definition

Proof of echo_loop

Protocol

IV. Verification

• The implementation of send and recv is the same for client and server. 
 In fact, their implementation is also agnostic of network.

• This is possible because channels are using in- and out- buffers as indirection 
 (calling send enqueues to the out-buffer, calling recv dequeues from the in-buffer)

 Anatomy of send & recv

The rendez-vous point
 Crucially, this is also where the connection between Actris Ghost Theory and  
 the implementation takes place. However, this connection is not immediate : 

• the two Actris logical buffers  
 > describe symmetrically for each direction the messages in transit 
 > are governed (inside an Iris invariant) by the shared resource

• the four physical buffers  
 > play different role (out-buffer simply (re)transmits, in-buffer keeps data for delivery)  
 > are local data of each node and are updated asynchronously

• Our solution is to introduce additional logical buffers Tl, Rl, Tr, Rr as a glue. 
(Tl, Tr) describe the history of sent messages;  
(Rl, Rr) describe the history of received messages (by the application).

• Various relations must hold between Actris, glue, and physical buffers:

More buffers, seriously ?

• Rr is prefix of Tl and Rl is prefix of Tr

• v1 = Tl − Rr and v2 = Tr − Rl

(Internal-Coh)

(Actris-Coh)

• sbufl is suffix of Tl and sbufr is suffix of Tr (SBuf-Coh)

• rbufl is prefix of (Tr − Rl) and rbufr is prefix of (Tl − Rr) (Rbuf-Coh)

• The verification is then primarily an effort in preserving these relations,  
 in the presence of the concurrent accesses of the communication layer.

Other Observations (1/3)

• The internal procedures that enforce the fault-tolerance are also (mostly)
the same for clients and servers, and so are our proofs.

Other Observations (2/3)

• The 4-handshake is different for each side and requires some effort in
verification as it encodes an STS with several edge and absurd cases.

Client Server

network

• The implementation/verification of server side is more difficult, because the
server must maintain a table of known clients with their connection state  
and a channel description queue for the established connections.

Other Observations (3/3)

V. Conclusion & Future Directions

Contributions

�
�
�

/HDGHU¬
)ROORZHUV�

�

�

'LVWULEXWHG
/RFN�6HUYLFH

&OLHQWV 1(:

&RPSLOHU

2&DPO

WUDQVODWLRQ PRGXODU�UHDVRQLQJ

6HULDOL]DWLRQ�
¬¬�/LVW��4XHXH������

5HOLDEOH�6HVVLRQV
/LEUDU\¬

1(:

1(:

5HOLDEOH
6HVVLRQV
/LEUDU\��

1(:

GLVWULEXWHG�VHSDUDWLRQ�ORJLF

&RT
,ULV

VHVVLRQ�W\SH�EDVHG�UHDVRQLQJ

$FWULV

6SHFLÀFDWLRQ

9HULÀFDWLRQ

1(:

1(:

$QHULV�3URJUDP�/RJLF�$QHULV/DQJ�

9HULÀHG��
/LEUDULHV��������

6KLP

VXSSRUW
OD\HU

PRGHO
OD\HU

XWLOLWLHV�
GDWDW\SHV

PLGGOH�
ZDUH

OLEUDULHV�
FOLHQWV

H[HFXWDEOH�FRGH

&ORVHG�SURRI 1(:

�������

1(:

JHQHUDWHG�ÀOHV

6SHF���YHULÀFDWLRQ

• Graceful/Abrupt session ending : detectable connection failures, reconnection

• Cryptography/Security: 4-way handshake procedure / authentification / QUIC

• Network Partitions : group membership/consensus built on top of our library

• Group Communication : client-service communication

• Transparency : verified libs for distributed/multithreaded programs (e.g. Functory)

• (and maybe your insights/ideas !)

Possible Future Directions

Thank you !

Backup slides

Client Implementation

Server Implementation

