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Undisciplined specs in Iris: Advantages

● Single proof for NOVA (NOVA's pretty complex)
● Small footprint without detours through big footprint and associated 

overhead
● We lose adequacy for NOVA in isolation; but appropriate for us since 

NOVA's internal
Subjectively:

● Easy to evolve
● Two specs, but little duplication (undisciplined specs are mostly about 

error handling and atomicity)



Undisciplined NOVA specs as 
axiomatic semantics
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An undisciplined WP for the NOVA machine

Predicates:

nova.wp : ∀ (ec : ec_nameT), mpred

ec.regs : ec_nameT -> Qp -> regsT -> mpred

Types:

Val := False. Expr := Unit.

ec_nameT : an identifier for a "thread" (Execution 
Context)

regsT : the type of the "register file" (CPU internal 
state)

regular_machine_step :
  ∀ (old new : regsT), Prop

atomic CPU steps (no assumptions on guest 
discipline)

HW, caches, memory modeled as external 
components

NOVA

CPU

NOVA machine = NOVA + CPU:

Execution alternates normal steps and NOVA steps:

Userland

NOVA
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nova.wp_step_intro:
|={⊤,↑nova_ns}=> ▷ (∃ regs, ec.regs ec 1 regs ∗
    if syscall_trap regs then wp_hypercall ec regs else
      (∀ regs', [| regular_machine_step regs regs' |] -∗
        ec.regs ec 1 regs' ={↑nova_ns,⊤}=∗ wp ec) 
      ∧ wp_traps ec regs)
⊢ nova.wp ec.
Elimination rule: syscall for spawning threads

An undisciplined WP for the NOVA machine
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An undisciplined WP for the NOVA machine

wp_hypercall ec regs :=
  match decode_syscall regs with
  | ipc_call => wp_ipc_call ec regs
  | ipc_reply => wp_ipc_reply ec regs
  | …
  end.
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Robustness

Robustness statement:

inv invName process_resources * persistent_process_props ⊢ 
nova.wp ec

Proof sketch: by Löb induction and case analysis on the step; each 
obligation must be satisfied via the invariant.

● For memory, for each physically accessible page (via page tables) we 
need ownership in invariants.

● For syscalls, we must satisfy all syscall preconditions from invariants.



An example syscall: IPC call
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ipc_call(handle)

EC 1
EC 1 (NOVA)
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ipc_call(handle)

EC 1
EC 1 (NOVA)

is EC 2 free? No? Pause!

lookup(handle) = EC 2

is EC 2 free? No? Pause!

lookup(handle) = EC 2

lookup(handle) = EC 2

is EC 2 free? Yes, so rendezvous!

EC 2

ipc_reply()

EC 3
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Rendezvous in Iris

Definition resolve_handle_chan_rendezvous 
    (caller_ec : ec_nameT) handle Q :=
  AU << ∀ chan rights q callee_state,
        cap_at caller_ec handle q (channel, rights) ∗
        □ channel_ec channel callee_ec ∗ 
        ec.kstate callee_ec callee_state >> @ novaM , ∅
    AU1 << ∃ result, cap_at handle q (chan, rights) ∗ 
    AU1 << if insufficient rights then [| result = EPERM |] ∗
    AU1 <<   ec.kstate callee_ec callee_state
    AU1 << else [| callee_state = AVAILABLE ∧ result = SUCCESS |] ∗
    AU1 <<     ec.kstate callee_ec RUNNING),
    AU1 COMM Q result callee_ec >>.
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ipc_call combined "CPS" spec (simplified)

Definition ipc_spec_raw caller_ec handle :=
  resolve_handle_chan_rendezvous caller_ec handle
    (λ result callee_ec,
      ∀ src dst,
        buf_addr caller_ec src -∗ (* Persistent *)
        buf_addr callee_ec dst -∗
        do_buf_copy caller_ec callee_ec
          (do_set_regs callee_ec
            (nova.wp callee_ec)))



ipc_call buffer copies
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Example: inter-process message send, simplified

{ nova_src_buf |-> msg_bytes0 * P msg_bytes0 * channel_spec channel_handle P Q }
ipc_call(channel_handle)
{ nova_src_buf |-> msg_bytes1 * Q msg_bytes1 * channel_spec channel_handle P Q }
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Example: inter-process message send, simplified

{ nova_src_buf |-> msg_bytes0 * P msg_bytes0 * channel_spec channel_handle P Q }
ipc_call(channel_handle)
{ nova_src_buf |-> msg_bytes1 * Q msg_bytes1 * channel_spec channel_handle P Q }

● Sufficient for undisciplined clients: no ❌, assumes sequential ownership (not satisfiable from 
invariants)!

● Other threads can write to the buffer during the call
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Buffer copy with atomic triples

{ nova_src_buf |-> msg_bytes ∗ (∃ xs, nova_dst_buf |-> xs) }
ipc_call_copy()
{ nova_src_buf |-> msg_bytes ∗ nova_dst_buf |-> msg_bytes }

<<< ∀ msg_bytes, nova_src_buf |-> msg_bytes ∗ (∃ xs, nova_dst_buf |-> xs) >>>
ipc_call_copy()
<<< nova_src_buf |-> msg_bytes ∗ nova_dst_buf |-> msg_bytes >>>

► Sufficient for unverified clients: ✅ — Sequential ownership not required!
► Implies disciplined spec: ✅ (atomic triples imply sequential triples)
► Implementable (efficiently): ❌

► ❌ normal buffer read is not atomic 
► ❌ a big kernel lock would not suffice; only stopping all other threads
► ❌ performance requires unsynchronized reads
► 💡 multiple atomic steps!
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<<< ∀ x, P >>> e <<< ∃ y, Q RET f x y >>> :=

  ∀ R, AU << ∀ x, P x >> << ∃ y, Q x y, COMM R (f x y) >> -∗ WP e {{ R }}

do_byte_read src Q := AR << ∀ v, src |-> v >> << Q v >>

AR << ∀ x, P x >> << R x >> :=

  AU << ∀ x, P x >> << P x, COMM R x >>

do_byte_write dst v Q := AC << ∀ w, dst |-> w >> << dst |-> v, COMM Q v >>

do_byte_copy src dst Q :=

  do_byte_read src (λ v, do_byte_write dst v Q)

► Sufficient for unverified clients: ✅ 
► Implies disciplined spec: ✅ (sequential ownership suffices to prove AUs)
► Implementable (efficiently): ~✅ (atomics suffice)

Byte copy via sequential composition
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For performance, NOVA does not order reads/writes to different bytes. So our final spec is:

do_buf_copy src dst Q :=

  ∃ (Qcopy : N -> mpred),

    (∗i ∈ [0, 512[ do_byte_copy (src + i) (dst + i) (Qcopy i)) ∗

    ((∗i ∈ [0, 512[ Qcopy i) -* Q)

Final spec: do_buf_copy src dst R -* WP ipc_call_copy() {{ R }}

Sufficient for unverified clients: ✅ 

Implementable (efficiently): ✅ (relaxed atomics suffice!)

Non-deterministic parallel composition
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Some metrics: Approximate spec size

Specs for 12 syscalls (out of ~15): 39 commits
● ipc_call requires 7 steps + UTCB copy
● ctrl_sm: 6 steps
● ctrl_pd (selector manipulation): 2 + 2 for each selector
● 24 steps across the other 10 syscalls

We derived sequential specs for most of those.
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Conclusions

Undisciplined specs simplify maintenance of kernel specs:
● Single verification of NOVA against undisciplined spec
● Derive disciplined spec
● Conjectured: robustness (robust safety?)
● Less overhead than operational semantics
● Enable end-to-end verification


