
Programming a Microkernel
Specification in Separation Logic
Paolo G. Giarrusso, Gregory Malecha, David Swasey,

Yoichi Hirai

BedRock Systems, Inc.

2The future is built on BedRock.

Work-in-progress proof of bare-metal
property: VMM refines bare-metal
machine.

● Operational semantics "at the
boundaries" — HW & unverified
guests.

Formal Verification @
Bedrock

Drivers

NOVA

…VMM

NOVA
API

2

Unverified host
processes

Unverified
guests

HW

TCB:

● C++ compiler correctness
● C++ axiomatic semantics in Iris
● HW models

3The future is built on BedRock.

Work-in-progress proof of bare-metal
property: VMM refines bare-metal
machine.

● Operational semantics "at the
boundaries" — HW & unverified
guests.

NOVA API (outside of bare-metal
property statement)

Formal Verification @
Bedrock

Drivers

NOVA

…VMM

NOVA
API

3

Unverified host
processes

Unverified
guests

HW

TCB:

● C++ compiler correctness
● C++ axiomatic semantics in Iris
● HW models

This talk

Highly concurrent L4-family
capability-based microkernel

4The future is built on BedRock.

Challenges with kernel
specs

NOVA microkernel

Verified host
processes

Kernel API

Disciplined
NOVA specs —
in Iris

5The future is built on BedRock.

Challenges with kernel
specs

NOVA microkernel

Verified host
processes

Kernel API

Unverified, undisciplined
processes

Disciplined
NOVA specs —
in Iris

6The future is built on BedRock.

Challenges with kernel
specs

NOVA microkernel

Verified host
processes

Kernel API

Unverified, undisciplined
processes

Undisciplined
NOVA specs

Robustness
proof

Disciplined
NOVA specs —
in Iris

7The future is built on BedRock.

Challenges with kernel
specs

NOVA microkernel

Verified host
processes

Kernel API

Unverified, undisciplined
processes Robustness

proof

Disciplined
NOVA specs —
in Iris

directly
in Iris

Undisciplined
NOVA specs

8The future is built on BedRock.

Undisciplined specs in Iris: Advantages

● Single proof for NOVA (NOVA's pretty complex)
● Small footprint without detours through big footprint and associated

overhead
● We lose adequacy for NOVA in isolation; but appropriate for us since

NOVA's internal
Subjectively:

● Easy to evolve
● Two specs, but little duplication (undisciplined specs are mostly about

error handling and atomicity)

Undisciplined NOVA specs as
axiomatic semantics

10The future is built on BedRock.

An undisciplined WP for the NOVA machine

Predicates:

nova.wp : ∀ (ec : ec_nameT), mpred

ec.regs : ec_nameT -> Qp -> regsT -> mpred

Types:

Val := False. Expr := Unit.

ec_nameT : an identifier for a "thread" (Execution
Context)

regsT : the type of the "register file" (CPU internal
state)

regular_machine_step :
 ∀ (old new : regsT), Prop

atomic CPU steps (no assumptions on guest
discipline)

HW, caches, memory modeled as external
components

NOVA

CPU

NOVA machine = NOVA + CPU:

Execution alternates normal steps and NOVA steps:

Userland

NOVA

11The future is built on BedRock.

nova.wp_step_intro:
|={⊤,↑nova_ns}=> ▷ (∃ regs, ec.regs ec 1 regs ∗
 if syscall_trap regs then wp_hypercall ec regs else
 (∀ regs', [| regular_machine_step regs regs' |] -∗
 ec.regs ec 1 regs' ={↑nova_ns,⊤}=∗ wp ec)
 ∧ wp_traps ec regs)
⊢ nova.wp ec.
Elimination rule: syscall for spawning threads

An undisciplined WP for the NOVA machine

12The future is built on BedRock.

An undisciplined WP for the NOVA machine

wp_hypercall ec regs :=
 match decode_syscall regs with
 | ipc_call => wp_ipc_call ec regs
 | ipc_reply => wp_ipc_reply ec regs
 | …
 end.

13The future is built on BedRock.

Robustness

Robustness statement:

inv invName process_resources * persistent_process_props ⊢
nova.wp ec

Proof sketch: by Löb induction and case analysis on the step; each
obligation must be satisfied via the invariant.

● For memory, for each physically accessible page (via page tables) we
need ownership in invariants.

● For syscalls, we must satisfy all syscall preconditions from invariants.

An example syscall: IPC call

15The future is built on BedRock.

ipc_call(handle)

EC 1
EC 1 (NOVA)

16The future is built on BedRock.

ipc_call(handle)

EC 1
EC 1 (NOVA)

is EC 2 free? No? Pause!

lookup(handle) = EC 2

EC 2

17The future is built on BedRock.

ipc_call(handle)

EC 1
EC 1 (NOVA)

is EC 2 free? No? Pause!

lookup(handle) = EC 2

is EC 2 free? No? Pause!

lookup(handle) = EC 2

EC 2

18The future is built on BedRock.

ipc_call(handle)

EC 1
EC 1 (NOVA)

is EC 2 free? No? Pause!

lookup(handle) = EC 2

is EC 2 free? No? Pause!

lookup(handle) = EC 2

EC 2

ipc_reply()

EC 3

19The future is built on BedRock.

ipc_call(handle)

EC 1
EC 1 (NOVA)

is EC 2 free? No? Pause!

lookup(handle) = EC 2

is EC 2 free? No? Pause!

lookup(handle) = EC 2

lookup(handle) = EC 2

is EC 2 free? Yes, so rendezvous!

EC 2

ipc_reply()

EC 3

20The future is built on BedRock.

Rendezvous in Iris

Definition resolve_handle_chan_rendezvous
 (caller_ec : ec_nameT) handle Q :=
 AU << ∀ chan rights q callee_state,
 cap_at caller_ec handle q (channel, rights) ∗
 □ channel_ec channel callee_ec ∗
 ec.kstate callee_ec callee_state >> @ novaM , ∅
 AU1 << ∃ result, cap_at handle q (chan, rights) ∗
 AU1 << if insufficient rights then [| result = EPERM |] ∗
 AU1 << ec.kstate callee_ec callee_state
 AU1 << else [| callee_state = AVAILABLE ∧ result = SUCCESS |] ∗
 AU1 << ec.kstate callee_ec RUNNING),
 AU1 COMM Q result callee_ec >>.

21The future is built on BedRock.

ipc_call combined "CPS" spec (simplified)

Definition ipc_spec_raw caller_ec handle :=
 resolve_handle_chan_rendezvous caller_ec handle
 (λ result callee_ec,
 ∀ src dst,
 buf_addr caller_ec src -∗ (* Persistent *)
 buf_addr callee_ec dst -∗
 do_buf_copy caller_ec callee_ec
 (do_set_regs callee_ec
 (nova.wp callee_ec)))

ipc_call buffer copies

23The future is built on BedRock.

Example: inter-process message send, simplified

{ nova_src_buf |-> msg_bytes0 * P msg_bytes0 * channel_spec channel_handle P Q }
ipc_call(channel_handle)
{ nova_src_buf |-> msg_bytes1 * Q msg_bytes1 * channel_spec channel_handle P Q }

24The future is built on BedRock.

Example: inter-process message send, simplified

{ nova_src_buf |-> msg_bytes0 * P msg_bytes0 * channel_spec channel_handle P Q }
ipc_call(channel_handle)
{ nova_src_buf |-> msg_bytes1 * Q msg_bytes1 * channel_spec channel_handle P Q }

● Sufficient for undisciplined clients: no ❌, assumes sequential ownership (not satisfiable from
invariants)!

● Other threads can write to the buffer during the call

25The future is built on BedRock.

Buffer copy with atomic triples

{ nova_src_buf |-> msg_bytes ∗ (∃ xs, nova_dst_buf |-> xs) }
ipc_call_copy()
{ nova_src_buf |-> msg_bytes ∗ nova_dst_buf |-> msg_bytes }

<<< ∀ msg_bytes, nova_src_buf |-> msg_bytes ∗ (∃ xs, nova_dst_buf |-> xs) >>>
ipc_call_copy()
<<< nova_src_buf |-> msg_bytes ∗ nova_dst_buf |-> msg_bytes >>>

► Sufficient for unverified clients: ✅ — Sequential ownership not required!
► Implies disciplined spec: ✅ (atomic triples imply sequential triples)
► Implementable (efficiently): ❌

► ❌ normal buffer read is not atomic
► ❌ a big kernel lock would not suffice; only stopping all other threads
► ❌ performance requires unsynchronized reads
► 💡 multiple atomic steps!

26The future is built on BedRock.

<<< ∀ x, P >>> e <<< ∃ y, Q RET f x y >>> :=

 ∀ R, AU << ∀ x, P x >> << ∃ y, Q x y, COMM R (f x y) >> -∗ WP e {{ R }}

do_byte_read src Q := AR << ∀ v, src |-> v >> << Q v >>

AR << ∀ x, P x >> << R x >> :=

 AU << ∀ x, P x >> << P x, COMM R x >>

do_byte_write dst v Q := AC << ∀ w, dst |-> w >> << dst |-> v, COMM Q v >>

do_byte_copy src dst Q :=

 do_byte_read src (λ v, do_byte_write dst v Q)

► Sufficient for unverified clients: ✅
► Implies disciplined spec: ✅ (sequential ownership suffices to prove AUs)
► Implementable (efficiently): ~✅ (atomics suffice)

Byte copy via sequential composition

27The future is built on BedRock.

For performance, NOVA does not order reads/writes to different bytes. So our final spec is:

do_buf_copy src dst Q :=

 ∃ (Qcopy : N -> mpred),

 (∗i ∈ [0, 512[do_byte_copy (src + i) (dst + i) (Qcopy i)) ∗

 ((∗i ∈ [0, 512[Qcopy i) -* Q)

Final spec: do_buf_copy src dst R -* WP ipc_call_copy() {{ R }}

Sufficient for unverified clients: ✅

Implementable (efficiently): ✅ (relaxed atomics suffice!)

Non-deterministic parallel composition

28The future is built on BedRock.

Some metrics: Approximate spec size

Specs for 12 syscalls (out of ~15): 39 commits
● ipc_call requires 7 steps + UTCB copy
● ctrl_sm: 6 steps
● ctrl_pd (selector manipulation): 2 + 2 for each selector
● 24 steps across the other 10 syscalls

We derived sequential specs for most of those.

29The future is built on BedRock.

Conclusions

Undisciplined specs simplify maintenance of kernel specs:
● Single verification of NOVA against undisciplined spec
● Derive disciplined spec
● Conjectured: robustness (robust safety?)
● Less overhead than operational semantics
● Enable end-to-end verification

