AARHUS

/ ¥ UNIVERSITY

CENTER FOR BASIC RESEARCH IN
PROGRAM VERIFICATION

Trillium

3 May, 2022

Simon Oddershede Gregersen
joint work with Amin Timany, Léo Stefanesco, Léon Gondelman, Abel Nieto, and Lars Birkedal

™ X
File Edit Window TLC Model Checker TLA Proof Manager Help

% Spec Explorer 5% 77 O |RFirewalltla | ~ O| © Parsing Errors # =
= Firewall [Firewall.tla] C:\Users\ahelwer\TLA\Firewall.tla TLA+ Parser Error
&1 KeyValueStore [KeyValueStore.tla] TLA Module) line 25, col 16 to line 25, col 20 of module Firewall
R e el L L DL LD L EL R MODULE Firewall -----------=---cccccocmoomoonoo A"
2 EXTENDS Integers . ,
3 CONSTANTS Address, * The set of all addresses Unknown operator: “Ports'.
4 Port, * The set of all ports
Create \ 5 Protocol * The set of all protocols
6
7 AddressRange == * The set of all address ranges
8 Address \X Address
9
16 InAddressRange[r \in AddressRange, a \in Address] ==
11 /\ r[1] <= a
wakeup workload exhausted 1 8 < (2]
dlspatch 1431 PortRange == * Th t of all t
15 Por‘% \)-(-Por‘t s sebor @ port renges The type “2a" message sent by this action therefore tells every acceptor a that, when it receives
16 the message, all the enabling conditions of VoteFor(a, b, v) but the first, mazBal[a] < b, are
17 InPortRange[r \in PortRange, p \in Port] == s;;:sﬁez (b, v) A
. 18 /\ r[1] <=p aseZa(b, v) =
preemption 19 /\ p <= r[2] A—3m € msgs :m.type = “2a" Am.bal = b
: . 26 A3 Q € Quorum :
l'ep|en|3hmem depletlon 21 Packet == * The set of all packets LET le Y {m € msgs : A m.type = “1b”
22 [sourceAddress : Address, ' /\m‘acc €0
23 sourcePort : Port, = A .b ! b}
Depleted 24 destAddress : Address, m.0ak =
P @25 destPort : Ports, Qlbv = {m € Q1b: m.mbal > 0}
. 26 protocol : Protocol] IN AVa€ Q:Ime Qlb: m.acc =a
o i 11 * Th f all fi 11 AV QL= {}
28 Firewa == * The set of a irewalls vam 1hy :
29 [Packet -> BOOLEAN] N memcgal ”_'v
30 : -
31 Rule == * The set of all firewall rules ‘{\‘v:mm € Q1bv : m.mbal > mm.mbal
32 [remoteAddress : AddressRange, A Send([type — “2a", bal — b, val — v])
33 remotePort : PortRange, A UNCHANGED (mazBal, mazVBal, mazVal)
34 localAddress : AddressRange,
35 localPort : PortRange
36 protocol : SUBSET Pro;ocol, The Phase2b(a) action describes what acceptor a does when it receives a phase 2a message m,
37 allow : BOOLEAN] which is sent by the leader of ballot m.bal asking acceptors to vote for m.val in that ballot.
38 Acceptor a acts on that request, voting for m.val in ballot number m.bal, iff m.bal > mazBal[a],
- = * . which means that a has not participated in any ballot numbered greater than m.bal. Thus, this
f: Rulegsgsn Rt\Jl eThe set of all firevall rulesets enabling condition of the Phase2b(a) action together with the receipt of the phase 2a message m
a . Yt 0 VoteFor(a, m.bal, m.val) action of module Voting is enabled and can be executed.
b Aliowed[rset \in Ruleset, p \in | // a small example spin model message updates mazBal[a], mazVBal[a], and mazVal[a] so their values mean
R '
b LET matches == {rule \in rse| // Peterson's solution to the mutual exclusion problem (1981) laimed to mean in the comments preceding the variable declarations.
‘¢ /\ InAddressRange[rule.r(
] /\ InPortRange[rule.remo bool turn, flagl[2]; // the shared variables, booleans]
6 /\ InAddressRange[rule.l(byte ncrit; // nr of procs in critical section = “2a"
v /\ InPortRange[r.‘ule.locai mazBal[a]
: - ﬂ z;z;::‘s’c‘/’i 2;" rule.Pl active [2] proctype user() // two processes " = [mazBal EXCEPT ![a] = m.bal|
= ! j—
B /\ \A rule \in matches : { assart(pid == . ?l_— [mazVBal EXCETT ![_a] = mi.bal]
| ================================i _pid == 0 || _pid == 1); = [mazVal EXCEPT ![a] = m.val]
again: ype — "2b" | acc > a,
I flag[_pid] = 1; I — m.bal, val — m.val])
- turn = _pid;
(flag[1l - _pid] == @ || turn == 1 - _pid); Next and Spec are what we expect them to be.
) € Ballot : V Phasela(b)
ncrit++; Vv 3w € Value : Phase2a(b, v)
assert(ncrit == 1); // critical section 1 € Acceptor : Phaselb(a) V Phase2b(a)
ncrit——; . ,
flag[_pid] = o;
goto again
}
// analysis:
// $ spin -run peterson.pml

Models, not implementations!

Listing 1. Acceptor implementation.

let acceptor learners addr =
let skt = socket () in
socketbind skt addr;
let maxBal = ref None in
let maxvVal = ref None in
let rec loop () =
let (m, sndr) = receivefrom skt in
match acceptor_deser m with
| inl bal =>
if !maxBal = None ||
Option.get !maxBal < bal then

maxBal := Some bal;
sendto skt
(proposer_ser (bal, !maxVal)) sndr
else ()

| inr (bal, v) =>
if !maxBal = None ||
Option.get !maxBal <= bal then
maxBal := Some bal;
maxVal := Some accept;
sendto_all skt learners
(Learner_ser (bal, v))
else ()
end; loop () in loop ()

Listing 2. Proposer implementation.

let proposer acceptors skt bal v =

sendto_all skt acceptors
(acceptor_ser (inl bal));
let majority =
(Set.cardinal acceptors) / 2 + 1 in
let promises =
recv_promises skt majority bal in
let max_promise =
find_max_promise promises in
let av = Option.value max_promise v in
sendto_all skt acceptors
(acceptor_ser (inr (bal, av)))

Listing 3. Client implementation.

let client addr =

let skt = socket () in

socketbind skt addr;

let (ml, sndrl) = receivefrom skt in

let (_, vl) = client_deser ml in

let (m2, _) = wait_receivefrom skt
(fun (_, sndr2), sndr2 <> sndrl) in

let (_, v2) = client_deser m2 in

assert (vl = v2); vl.

Transport properties?

N

N

N

create

replenishment

workload exhausted

preemption

depletion

Depleted

How do we connect implementations to more abstract models?

... using lIris, obviously

Outline

> The Trillium methodology
> Case study: Single-decree Paxos using a TLA+ model

> Case study: Fair termination of a concurrent program

We also show eventual consistency of a CRDT; see the paper for more details

4

Running Example

let rec inc_loop () =

let n = !¢ 1n
cas(¢, n, n + 1); .
inc_loop () @ @ @)
in
inc_loop () || inc_loop ()

inc Minc

Definition
Given relation btw. traces ¢

execution trace T (hon-empty sequence of configurations)
model trace K (hon-empty sequence of model states)

T is a history-sensitive refinement of K under & whenever

A —

T 3¢k =&(1,k) AVe. last(T) - ¢c=30.7-¢c Ze k-0

holds coinductively.

T ek =E(T, k) AVe. last(t) = c=30.7-c 3¢ k-0

Running Example

For our running example, we pick
Einc(T, k) = heap(last(7))(£) = last(k) A stuttering (k)

where
stepping relation of the STS

'4

last(k') = 0 V last(k') =m0 Ifk=kK -0

stuttering(k) = ,
True otherwise

which reduces refinement to a notion of simulation.

9

Trillium

On top of the standard Iris base logic, we introduce two new connectives

wp™Me {Q} Model(d : M)

where M = (A, —) is some STS.

10

Trillium

The weakest precondition theory satisfies all the usual rules and

{Pre{Q}™ 0—md" Atomic(e) egVal
{P Model(6)} € {Q * Model(5') 1M N

ensures that we relate a
program step with a single
model step

using the usual encoding of Hoare triples.

11

Running Example

We show

—N—
L]

n.{ — n x Model(n) } inc {False}”Vli:

which implies the refinement relation.

12

Theorem (Adequacy) The set {6 |&(m- ¢,x-0)} is finite

/

Let € be a program, o a state, 0 a model state and £ finitary trace relation.
Suppose

= S((e,0),8) *wpile {@} * AlwaysHolds ()

then e is safe and (e, o) Z¢ d holds in the metalogic, where

AlwaysHolds(&) 2 V71, k. (...) —* b E(T, k)

13

Paxos by Refinement

1. Instantiate Trillium with AnerisLang, recovering the Aneris logic.

2. Find a suitable model: we pick Lamport's TLA+ specification, manually
translate it into Cog, and prove it correct.

3. Show node-local specs for each ‘role’ (proposer, acceptor, learner) under a
suitable invariant; compose spec for a distributed system

4. Prove consensus for the implementation by combining the refinement with
the model correctness theorem

14

Paxos TLA+ Model

» States (S, B, V) where S € P(PaxosMessage) is the set of sent messages
> [ransitions, e.q.,

msgla(b) € S b> B(a) V(a) = o
S,B,V —spp SU{msglb(a,b,0)}, Bla — Some(b)],V

THEOREM 3.1 (CoNsISTENCY, SDP MODEL). Let ispp = (0,A_. None, A_. None). If ispp —
(S, B,V) and both Chosen(S,v,) and Chosen(S, v5) hold then v, = v,.

*
SDP

15

Paxos Specs

{Ispp * MaxBal, (a, None) * MaxBal, (a, None) x ...} (ip; acceptor L a) {False}
{Ispp * pending(b) * ...} (ip; proposer A skt b v) {True}

where

Ispp

S,B,V.Model(S, B,V) * Msgs, (S) * MaxBal, (B) *

/

resolves underspecified
aspect of the model

‘Av'.msga(b,v’) € ST Quorum(Q) ShowsSafeAt(S, Q, b, v)

S.B. Y —gpp SU{msg2a(b.v)},B,V

B—

16

o

maps model messages to sent
messages in the implementation

Paxos Refinement

Pick

1S. last(k) = (S, _, _) N messages(last(T)) ~ S N stuttering(x)

and combine the refinement with the model consensus theorem to conclude

COROLLARY 3.2. Let e be a distributed system obtained by composing n proposers, m accep-
tors, and k learners. For any T and o, if (e;0) —* (T;0) and both Chosenl(messages(c),v,) and
Chosenl (messages(c),v,) hold then v, = v,.

17

Safety of Clients

The model is embedded as a resource in the logic so we can also exploit
oroperties of the model while proving specifications.

let client addr =
/] ...
{ISDP X .. } <ip; client a> { : } let (_, vl) = client_deser ml 1in

let (_, v2) client_deser m2 1in
assert (vl = v2):; vl.

18

Fair termination

Termination of every execution is too strong a notion for most concurrent programs.

Most concurrent programs only terminate if the scheduler is fair.

let rec yes b n =1f cas b 1 0 then n := !n-1;
if 'n > 0 then yes b n

let rec nobm=1f cas b 0 1 then m := Im-1;
if 'm > 0 then no b m

let start k = let b = ref 0 1in
(yes b (ref k) || no b (ref k))

19

Fair termination

A program trace is fair if its finite, or if its infinite and every reducible thread eventually
takes a step.

A program is fairly terminating it all its fair traces are finite.

But termination is a liveness property???

20

Fair termination

We prove fair termination by constructing a fairness-preserving and termination-
preserving refinement:

[—

~or all program traces T there exists a model trace K such that

a particular kind of model with
'roles’ that allows us to talk about
fairness model traces being 'fair’

fair termination

21

Fair termination

We prove fair termination by constructing a fairness-preserving and termination-
preserving refinement:

[—

~or all program traces T there exists a model trace K such that

fairness fairness
““--ll ll....... ““‘lll-l lllll.....

N by e® Ya,
o’ : A ¢ : A
'. “ .. “

.. “ .. “‘
‘ ...IIIIII““‘ P TTE L L
fair termination fair termination

a lifted notion of model with fuel to
make sure threads don’t ‘starve’ roles

22

Summary

> Trillium: a framework for showing history-sensitive refinement of programs and
abstract models

> Safety and liveness properties of models can be transported to the
implementation

> |Instantiation with AnerisLang and HeaplLang:

- Consensus of single-decree Paxos
- Eventual consistency of a CRDT
- Fair termination of a concurrent program

AARHUS

/ P UNIVERSITY

CENTER FOR BASIC RESEARCH IN
PROGRAM VERIFICATION

Thank you

Semantics of the Weakest Precondition

We generalise the notion of state interpretation to trace interpretation
S : Trace(Cfg) x Trace(Arq) — IProp
and define

wpz'e {0} £ (eeVal x 2.P(e))V
(e Zval « V7.7 ko K,T,T5.

valid(7) x 7 = (7" - (11 + Kle] H T3,0)) * S(7, k) = :

reducible(e, o) *

|}

(\v’ez,ag,e}. (e,0) = (e2,02,€F) —* > 0eE

30.S(7 - (T1 + Klea) H To H€5,0"), k- 0) *

wp2tes (@} >l< wpz' ¢’ {True}))

e'cey

Remark

The standard Iris WP doesn't allow us to prove this kind of refinement.
We could prove, e.g.,

{3n. 0= nxn: MoNoNaT " }inc{.. .}

|
.- - |

but this spec would also be satistied by, e.g.,

let rec inc_loop () =
let n = !/ 1n
cas(/, n, n + 2);
inc_loop ()
in
inc_loop () || inc_loop ()

Q1bu(S,Q,b) = {m € S | Ja,v.m = msgib(a, b, Some(v)) A a € Q}
HavePromised(S,Q,b) = Va € Q.dm € S,0.m = msg1b(a, b, 0)
IsMaxVote(S, Q, b,v) = dmy € Q1bv(S, Q, b), ag, by. m = msgib(ay, b, Some(by, v))A
Vm' € Q1bu(S, Q,b).
da’,b’,v’.m" = msgib(a’, b, Some(b’,v")) Aby > b’
ShowsSafeAt(S, Q, b,v) = HavePromised(S, Q,b) A (Q1bv(S,Q,b) =0 V IsMaxVote(S, Q, b, v))

SDP-PHASE1A SDP-PHASELB
msgla(b) € S b > B(a) V(a)=o
S, B,V —spp SU {msgla(b)}, B,V S,B,V —spp SU {msglb(a,b,0)},B[a — Some(d)],V

SDP-PHASEZ2A
Av’. msg2a(b,0’) € S Quorum(Q) ShowsSafeAt(S, Q, b, v)

S, 8,V —spp SU {msg2a(h,0)}, B,V

SDP-PHASE2B
msga(b,v) € S b > B(a)

S,B,V —spp S U{msg2b(a,b,v)},Bla+— Some(b)],V][a+— Some(b,v)]

Components Formal system used

. . Simple
Liveness properties, e.g., strong Areuments
eventual consistency of CRDTs formagiized in Coq
Functional e
Program refinements Adequacy of Trillium
2PC, Paxos, CRDTs, ... Trillium proof rules
HeaplLang in-

stantiation Aneris instantiation Iris base logic &
illi Trillium proof
of Trillium Program ules

of Trillium
... > [ogic
designer

The foundation we build upor Iris base logic & Iris proof mode Coq

Liveness properties, e.g., termi-
nation of concurrent programs
Functional

Iris proof rules

