Later Credits

Resourceful Reasoning for the Later Modality

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung,

Robbert Krebbers, Lars Birkedal, Derek Dreyer

Iris Workshop, May 2022

The Historic Foundation of Iris

A Powerful Combination



Step-Indexing: A Double Edged Sword

Step-indexing enables **recursive reasoning** Löb induction, higher-order ghost state, ...

but introduces irritating step-indexing artifacts.

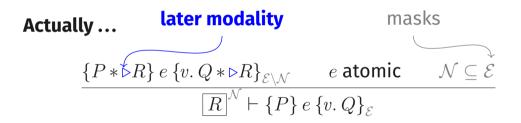
the later modality $\triangleright P$

Running Example: Impredicative Invariants

Opening Invariants (from Iris 1.0)

$$\frac{\{P \ast R\} e \{Q \ast R\}}{\left[R\right] \vdash \{P\} e \{Q\}} e \text{ atomic}$$

Running Example: Impredicative Invariants



because invariants in Iris are step-indexed.

The Akward Role of the Later Modality

The later modality prevents inconsistent proofs,

 $\triangleright R$ is sound, R not necessarily

but in proofs we worry mostly about removing it .

we want R, not $\triangleright R$

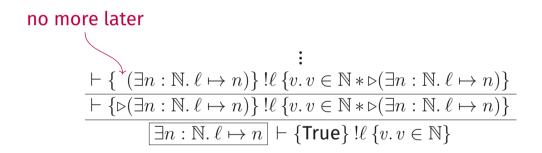
Example: A Typical Iris Proof

$\exists n: \mathbb{N}. \ \ell \mapsto n \vdash \{\mathsf{True}\} \ ! \ \ell \ \{v. \ v \in \mathbb{N}\}$

Example: A Typical Iris Proof

$\frac{\vdash \{\triangleright (\exists n : \mathbb{N}. \ell \mapsto n)\} ! \ell \{v. v \in \mathbb{N} * \triangleright (\exists n : \mathbb{N}. \ell \mapsto n)\}}{\exists n : \mathbb{N}. \ell \mapsto n} \vdash \{\mathsf{True}\} ! \ell \{v. v \in \mathbb{N}\}$

Example: A Typical Iris Proof



We have $\triangleright R$ in our context, but we need R to proceed.

Existing Options

- Timeless Propositions
- Commuting Rules
- Program Steps

We have $\triangleright R$ in our context, but we need R to proceed.

Existing Options

• Timeless Propositions

 $\frac{\{P*R\} \ e \ \{v. \ Q\} \qquad \mathsf{timeless}(R)}{\{P*\triangleright R\} \ e \ \{v. \ Q\}}$

 $\mathsf{timeless}(\ell \mapsto v)$

- Commuting Rules
- Program Steps

We have $\triangleright R$ in our context, but we need R to proceed.

Existing Options

- Timeless Propositions
- Commuting Rules

$$\triangleright(P * Q) \vdash \triangleright P * \triangleright Q \qquad \qquad \triangleright(\exists x. P) \vdash \exists x. \triangleright P$$

• Program Steps

. . .

We have $\triangleright R$ in our context, but we need R to proceed.

Existing Options

- Timeless Propositions
- Commuting Rules
- Program Steps

$$\frac{\{R\} e' \{v. Q\} \quad e \to_{\mathsf{pure}} e'}{\{\triangleright R\} e \{v. Q\}}$$

. . .

Limitations of the Existing Options

Existing options apply to most invariants

$$\boxed{R} = \boxed{\exists n : \mathbb{N}. \ell \mapsto n} \quad \text{where} \quad \boxed{\exists n : \mathbb{N}. \ell \mapsto n} \quad \text{timeless}$$

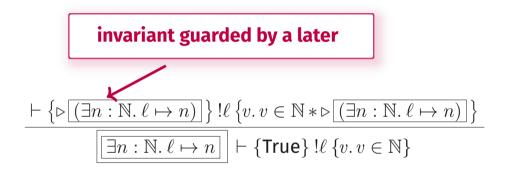
Existing options apply to most invariants

$$\boxed{R} = \boxed{\exists n : \mathbb{N}. \ \ell \mapsto n} \quad \text{where} \quad \boxed{\exists n : \mathbb{N}. \ \ell \mapsto n} \quad \text{timeless}$$

But they are no silver bullet. They do not apply to

$$\boxed{R} = \boxed{\exists n : \mathbb{N}. \ell \mapsto n} \quad \text{where} \quad \boxed{\exists n : \mathbb{N}. \ell \mapsto n}$$

We are stuck ...



So what then?

" Help ...

MPI Mattermost +						
III 💬 Channels $\leftarrow \rightarrow$	Q Search		0	@ []		æ
Iris ~	+ Iris He	Ipdesk ~ ☆ ☆1 🗈 The <i>public</i> channel for general Iris-rel	ated questions of all ki			0
		What is the most straightforward way of c spatial context) where x and y are Exc I have an RA built directly in terms of exc construct a simple proof of my_own x * r	lusive? l_auth (and thereb	y excl), ar		
CHANNELS	R	Robbert Krebbers 4:16 PM Commented on Jonas Kastberg's message: I am afraid there is no easy way. The Ex			ard way	
PL Iris Helpdesk		the Iris lemma. You have to prove such a lemma for you (This is accurating you are not using a dia		estion.		

11

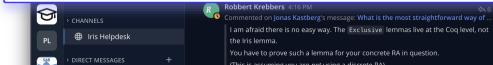
So what then?

Help ...

Have you tried these non-local refactorings of your proof

• flattening your invariant hierarchy

or considered giving up?



Developing a Fourth Option

Our Contribution: Later Credits

Later credits turn

the right to eliminate a later into an

transform $\triangleright R$ into R

ownable resource, which is subject to

traditional separation logic reasoning .

passing around, framing, sharing via invariants

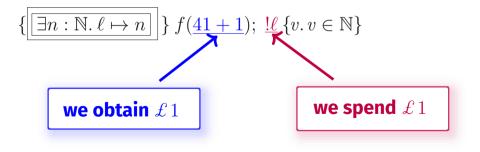
Later Credits in a Nutshell

$$\frac{\{R\} e' \{v. Q\} \qquad e \to_{\mathsf{pure}} e'}{\{\triangleright R\} e \{v. Q\}}$$

becomes

$$\frac{\{R \ast \pounds 1\} e' \{v. Q\} \qquad e \rightarrow_{\mathsf{pure}} e'}{\{R\} e \{v. Q\}} \qquad \qquad \frac{\{R\} e \{v. Q\}}{\{\pounds 1 \ast \triangleright R\} e \{v. Q\}}$$

Novelty: Prepaid Reasoning



$$\{ \boxed{\exists n : \mathbb{N}. \ell \mapsto n} \} f(41+1); !\ell \{ v. v \in \mathbb{N} \}$$

$$\{ \boxed{\exists n : \mathbb{N}. \ell \mapsto n} * \pounds 1 \} f(42); !\ell \{ v. v \in \mathbb{N} \}$$
$$\{ \boxed{\exists n : \mathbb{N}. \ell \mapsto n} \} f(41+1); !\ell \{ v. v \in \mathbb{N} \}$$

$$\{ \boxed{\exists n : \mathbb{N}. \ell \mapsto n} * \pounds 1 \} f(42); !\ell \{ v. v \in \mathbb{N} \}$$
$$\{ \boxed{\exists n : \mathbb{N}. \ell \mapsto n} \} f(41+1); !\ell \{ v. v \in \mathbb{N} \}$$

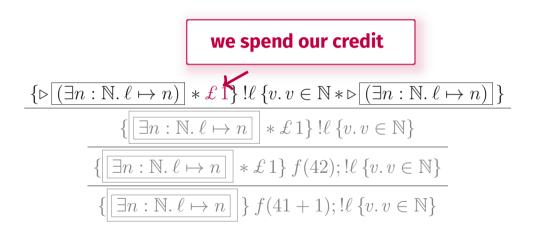
$$\{ \boxed{\exists n : \mathbb{N}. \ell \mapsto n} * \pounds 1 \} ! \ell \{ v. v \in \mathbb{N} \}$$
$$\{ \boxed{\exists n : \mathbb{N}. \ell \mapsto n} * \pounds 1 \} f(42); ! \ell \{ v. v \in \mathbb{N} \}$$
$$\{ \boxed{\exists n : \mathbb{N}. \ell \mapsto n} \} f(41+1); ! \ell \{ v. v \in \mathbb{N} \}$$

$$\{ \triangleright (\exists n : \mathbb{N}. \ell \mapsto n) \ast \pounds 1 \} ! \ell \{ v. v \in \mathbb{N} \ast \triangleright (\exists n : \mathbb{N}. \ell \mapsto n) \}$$

$$\{ \boxed{\exists n : \mathbb{N}. \ell \mapsto n} \ast \pounds 1 \} ! \ell \{ v. v \in \mathbb{N} \}$$

$$\{ \boxed{\exists n : \mathbb{N}. \ell \mapsto n} \ast \pounds 1 \} f(42); ! \ell \{ v. v \in \mathbb{N} \}$$

$$\{ \boxed{\exists n : \mathbb{N}. \ell \mapsto n} \} f(41+1); ! \ell \{ v. v \in \mathbb{N} \}$$



$$\left\{ \begin{array}{c} \left[\left(\exists n : \mathbb{N}. \, \ell \mapsto n \right) \right\} ! \ell \left\{ v. \, v \in \mathbb{N} * \triangleright \left[\left(\exists n : \mathbb{N}. \, \ell \mapsto n \right) \right] \right\} \\ \left\{ \triangleright \left[\left(\exists n : \mathbb{N}. \, \ell \mapsto n \right] * \pounds 1 \right\} ! \ell \left\{ v. \, v \in \mathbb{N} * \triangleright \left[\left(\exists n : \mathbb{N}. \, \ell \mapsto n \right) \right] \right\} \\ \\ \left\{ \begin{array}{c} \left[\exists n : \mathbb{N}. \, \ell \mapsto n \right] * \pounds 1 \right\} ! \ell \left\{ v. \, v \in \mathbb{N} \right\} \\ \\ \hline \left\{ \left[\exists n : \mathbb{N}. \, \ell \mapsto n \right] * \pounds 1 \right\} f(42); ! \ell \left\{ v. \, v \in \mathbb{N} \right\} \\ \\ \hline \left\{ \left[\exists n : \mathbb{N}. \, \ell \mapsto n \right] \right\} f(41+1); ! \ell \left\{ v. \, v \in \mathbb{N} \right\} \end{array}$$

Application: Prepaid Invariants

sharing later credits via invariants

Application: Logical Atomicity

cleaning up existing proofs

Theory and Soundness

the intuition on a napkin

Application: Prepaid Invariants

sharing later credits via invariants

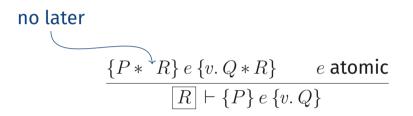
Application: Logical Atomicity

cleaning up existing proofs

Theory and Soundness

the intuition on a napkin

Do we really need a later?



"That cannot be sound, can it?

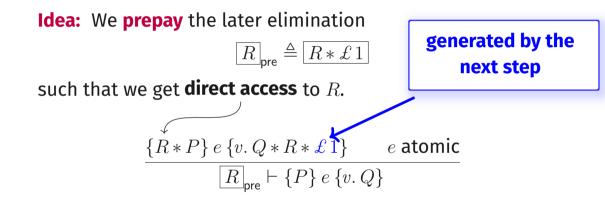
Idea: We prepay the later elimination

$$\boxed{R}_{\text{pre}} \triangleq \boxed{R * \pounds 1}$$

such that we get **direct access** to *R*.

$$\frac{\{R * P\} e \{v. Q * R * \pounds 1\}}{R_{pre} \vdash \{P\} e \{v. Q\}} e \text{ atomic}$$

Later Credits in Invariants



Later Credits in Invariants

Idea: We prepay the later elimination

$$\boxed{R}_{\text{pre}} \triangleq \boxed{R * \pounds 1}$$

such that we get **direct access** to *R*.

$$\begin{array}{c} \displaystyle \frac{\{R*P\} \ e \ \{v. \ Q*R*\pounds 1\}}{\{\pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}} \text{ spend credit} \\ \hline \frac{\{\pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}}{\{\triangleright \pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}} \text{ timelessness of } \pounds n \\ \hline \frac{\{P* \triangleright (R*\pounds 1)\} \ e \ \{v. \ Q* \triangleright (R*\pounds 1)\}}{[P* \triangleright (R*\pounds 1)]} e \ \{v. \ Q* \triangleright (R*\pounds 1)\}} \text{ later shuffling} \\ \hline \frac{R}{p_{\mathsf{re}}} \vdash \{P\} \ e \ \{v. \ Q\} \end{array}$$

Later Credits in Invariants

Idea: We prepay the later elimination

$$\boxed{R}_{\text{pre}} \triangleq \boxed{R * \pounds 1}$$

such that we get **direct access** to *R*.

$$\begin{array}{c} \displaystyle \frac{\{R*P\} \ e \ \{v. \ Q*R*\pounds 1\}}{\{\pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}} \text{ spend credit} \\ \displaystyle \frac{\{\pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}}{\{\triangleright \pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}} \text{ timelessness of } \pounds n \\ \displaystyle \frac{\{P* \triangleright (R*\pounds 1)\} \ e \ \{v. \ Q* \triangleright (R*\pounds 1)\}}{[P* \triangleright (R*\pounds 1)]} \text{ later shuffling} \\ \hline \hline R \\ \hline p_{\text{pre}} \vdash \{P\} \ e \ \{v. \ Q\} \end{array}$$

Later Credits in Invariants

Idea: We prepay the later elimination

$$\boxed{R}_{\text{pre}} \triangleq \boxed{R * \pounds 1}$$

such that we get **direct access** to *R*.

$$\begin{array}{c} \displaystyle \frac{\{R*P\} \ e \ \{v. \ Q*R*\pounds 1\}}{\{\pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}} \text{ spend credit} \\ \displaystyle \frac{\{\pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}}{\{\triangleright \pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}} \text{ timelessness of } \pounds n \\ \displaystyle \frac{\{P* \triangleright (R*\pounds 1)\} \ e \ \{v. \ Q* \triangleright (R*\pounds 1)\}}{[P* \triangleright (R*\pounds 1)]} \text{ later shuffling} \\ \hline \hline R \\ \hline p_{\mathsf{re}} \vdash \{P\} \ e \ \{v. \ Q\} \end{array}$$

Idea: We prepay the later elimination

$$\boxed{R}_{\text{pre}} \triangleq \boxed{R * \pounds 1}$$

such that we get **direct access** to *R*.

$$\begin{array}{c} \displaystyle \frac{\{R*P\} \ e \ \{v. \ Q*R*\pounds 1\}}{\{\pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}} \ \text{spend credit} \\ \displaystyle \frac{\{\pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}}{\{\triangleright \pounds 1* \triangleright (R*P)\} \ e \ \{v. \ Q*R*\pounds 1\}} \ \text{timelessness of } \pounds n \\ \hline \frac{\{P* \triangleright (R*\pounds 1)\} \ e \ \{v. \ Q* \triangleright (R*\pounds 1)\}}{\{P* \triangleright (R*\pounds 1)\} \ e \ \{v. \ Q* \triangleright (R*\pounds 1)\}} \ \text{later shuffling} \\ \hline \hline R \\ \hline p_{\text{re}} \vdash \ \{P\} \ e \ \{v. \ Q\} \end{array}$$

In fact, we obtain no later $\underbrace{\{P * R\} e \{v. Q * R\}}_{[P_{pre}} \vdash \{P\} e \{v. Q\}$

Disclaimer 1. To obtain this rule, we need to generate more than one credit per step. To do so, we modify Jourdan's multiple-laters-per-step extension of Iris.

Disclaimer 2. The paradox is of course still true. Even with later credits, we cannot open invariants without a guarding later around updates.

Application: Prepaid Invariants

sharing later credits via invariants

Application: Logical Atomicity

cleaning up existing proofs

Theory and Soundness

the intuition on a napkin

Logical Atomicity ...

... in a nutshell:

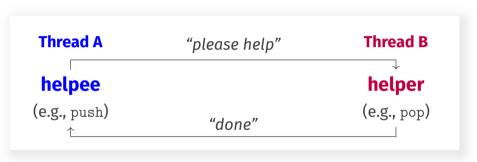
relaxed to "logically atomic" instructions

$$\frac{\{P * R\} e \{v. Q * R\}}{R} \stackrel{\text{e atomic}}{\models \{P\} e \{v. Q\}}$$

The later troubles ...

... arise for data structures with helping.

... arise for data structures with helping.



Complication. The interaction physically happens through memory, and logically happens **through invariants**.

How does it work?

Ask Ralf!

The Main Takeaway

Application: Prepaid Invariants

sharing later credits via invariants

Application: Logical Atomicity

cleaning up existing proofs

Theory and Soundness

the intuition on a napkin

The Later Credit Mechanism

A resource $\pounds\,n$

$$\begin{aligned}
\pounds (n+m) + \pounds n * \pounds m & \mathsf{timeless}(\pounds n) \\
\text{an update } & \models_{\mathsf{le}} P \\
\underbrace{P \vdash \rightleftharpoons_{\mathsf{le}} P & \rightleftharpoons_{\mathsf{le}} P * (P \twoheadrightarrow \rightleftharpoons_{\mathsf{le}} Q) \vdash \rightleftharpoons_{\mathsf{le}} Q & \pounds 1 * \triangleright P \vdash \rightleftharpoons_{\mathsf{le}} P \\
& \mathsf{a monad} \\
\text{and Hoare rules} \\
\underbrace{\{P\} e \{v. Q\}}_{\{\biguplus_{\mathsf{le}} P\} e \{v. Q\}} & \underbrace{\{P * \pounds 1\} e' \{v. Q\} & e \to_{\mathsf{pure}} e' \\
& \underbrace{\{P\} e \{v. Q\}}_{\{P\} e \{v. Q\}} & \underbrace{\{P * \pounds 1\} e' \{v. Q\}}_{\{P\} e \{v. Q\}}
\end{aligned}$$

Observation. Adequacy in Iris is only concerned with the **amortized number** of later eliminations.

without credits
$$e_0 \xrightarrow{\triangleright \text{ elim.}} e_1 \xrightarrow{\triangleright \text{ elim.}} \cdots \xrightarrow{\triangleright \text{ elim.}} e_n$$
at most n later eliminationswith credits $e_0 \xrightarrow{\pounds 1} e_1 \xrightarrow{\pounds 1} \cdots \xrightarrow{\pounds 1} e_n$

Our Contribution: Later Credits

Later credits turn

the right to eliminate a later into an

transform $\triangleright R$ into R

ownable resource, which is subject to

traditional separation logic reasoning .

passing around, framing, sharing via invariants

Step 1. Replace $\Rightarrow P$ with $\Rightarrow_{le} P$ in your definitions.¹

Step 2. Profit

- $\checkmark\,$ in program verification proofs
- $\checkmark\,$ in logical relation constructions
- \checkmark in ghost theories
- $\checkmark\,$ in logical atomicity proofs

¹Mostly backwards compatible. Missing interaction rules with plain propositions.

Later Credits vs. Time Receipts

Time receipts track the number of laters per step.

$$e_0 \xrightarrow{\triangleright} e_1 \xrightarrow{\diamond^2} \cdots \xrightarrow{\diamond^n} e_n$$

Later credits control where laters are.

 $\pounds 1 * \triangleright P \vdash \rightleftharpoons_{\mathsf{le}} P$ and

$$\frac{\{R\} e \{v. Q\}}{\{\pounds 1 * \triangleright R\} e \{v. Q\}}$$

We add time receipts $\mathbf{X}n$

$$\frac{\{P \ast \pounds 1 \ast \mathbf{\Xi} 1\} e_2 \{v, Q\}}{\{P\} e_1 \{v, Q\}} \qquad \qquad \frac{\{P\} e \{v, Q\} e \notin \mathsf{Val}}{\{P \ast \mathbf{\Xi} n\} e \{v, Q \ast \pounds n \ast \mathbf{\Xi} n\}}$$

by integrating with **Jourdan's multiple-laters-per-step extension**. The definition of prepaid invariants becomes $R_{pre} \triangleq \boxed{R * \pounds 1 * \mathbf{Z} 1}$, satisfying

$$\frac{\boxed{R}_{\mathsf{pre}} \vdash \{P\} e \{v. Q\}}{\{\triangleright R * \pounds 1 * \mathbf{\Sigma} 1 * P\} e \{v. Q\}} \qquad \qquad \frac{\{P * R\} e \{v. Q * R\}}{\boxed{R}_{\mathsf{pre}} \vdash \{P\} e \{v. Q\}} e \mathsf{atomic}$$

The Later Elimination Update

$$\begin{array}{c} \mathsf{choose a path} & \mathsf{add a later to your goal} \\ & & \\ \Rightarrow_{\mathsf{le}} P \triangleq \forall n. \ \pounds_{\bullet} n \ \twoheadrightarrow \Rightarrow \Rightarrow ((\pounds_{\bullet} n \ \ast \ P) \lor (\exists m < n. \ \pounds_{\bullet} m \ \ast \ \triangleright \Rightarrow_{\mathsf{le}} P)) \\ & &$$

where $\pounds n \triangleq [\circ n]^{\gamma_{lc}}$ and $\pounds n \triangleq [\bullet n]^{\gamma_{lc}}$ from $Auth(\mathbb{N}, +)$.