
Later Credits
Resourceful Reasoning for the Later Modality

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung,

Robbert Krebbers, Lars Birkedal, Derek Dreyer

Iris Workshop, May 2022

2

The Historic Foundation of Iris

Step-Indexed
Logical
Relations

Separation
Logic

3

A Powerful Combination
C
o
n
si
st
en

t *
Complete *

W
ell D

o
cu
m
ented*Easyto

Re

us
e
*

*
Evaluated*

PO
P
L
*
A

rtif
act

*

A
E
C

Iris: Monoids and Invariants as an

Orthogonal Basis for Concurrent Reasoning

Ralf Jung

MPI-SWS &

Saarland University

jung@mpi-sws.org

David Swasey

MPI-SWS

swasey@mpi-sws.org

Filip Sieczkowski

Aarhus University

filips@cs.au.dk

Kasper Svendsen

Aarhus University

ksvendsen@cs.au.dk

Aaron Turon

Mozilla Research

aturon@mozilla.com

Lars Birkedal

Aarhus University

birkedal@cs.au.dk

Derek Dreyer

MPI-SWS

dreyer@mpi-sws.org

Abstract

We present Iris, a concurrent separation logic with a simple premise:

monoids and invariants are all you need. Partial commutative

monoids enable us to express—and invariants enable us to enforce—

user-defined protocols on shared state, which are at the conceptual

core of most recent program logics for concurrency. Furthermore,

through a novel extension of the concept of a view shift, Iris supports

the encoding of logically atomic specifications, i.e., Hoare-style

specs that permit the client of an operation to treat the operation

essentially as if it were atomic, even if it is not.

Categories and Subject Descriptors D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory; D.3.3 [Programming

Languages]: Language Constructs and Features; F.3.1 [Logics and

Meanings of Programs]: Specifying and Verifying and Reasoning

about Programs

Keywords Separation logic, fine-grained concurrency, atomicity,

partial commutative monoids, invariants, higher-order logic, compo-

sitional verification.

1. Introduction

Concurrency is fundamentally about shared state. This is true not

only for shared-memory concurrency, where the state takes the form

of a “heap” that threads may write to and read from, but also for

message-passing concurrency, where the state takes the form of a

“network” that threads may send to and receive from (or a sequence

of “events” on which threads may synchronize). Thus, to scalably

verify concurrent programs of any stripe, we need compositional

methods for reasoning about shared state.

This goal has sparked a long line of work, especially in recent

years, during which a synthesis of rely-guarantee reasoning [21] and

separation logic [31, 28] has led to a series of increasingly advanced

program logics for concurrency: RGSep [37], SAGL [13], LRG [12],

CAP [10], HLRG [15], CaReSL [34], iCAP [33], FCSL [27],

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

POPL ’15, January 15–17, 2015, Mumbai, India.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3300-9/15/01. . . $15.00.

http://dx.doi.org/10.1145/2676726.2676980

TaDA [8], and others. In this paper, we present a logic called Iris that

explains some of the complexities of these prior separation logics in

terms of a simpler unifying foundation, while also supporting some

new and powerful reasoning principles for concurrency.

Before we get to Iris, however, let us begin with a brief overview

of some key problems that arise in reasoning compositionally about

shared state, and how prior approaches have dealt with them.

1.1 Invariants and their limitations

The canonical model of concurrency is sequential consistency [23]:

threads take turns interacting with the shared state (reading/writing,

sending/receiving), with each turn lasting for one step of computa-

tion.1 Although the semantics of sequentially consistent (SC) con-

currency is simple to define, that does not mean it is easy to reason

about. In particular, the key question is how to do thread-local

reasoning—that is, verifying one thread at a time—even though

other threads may interfere with (i.e., mutate) the shared state in

between each step of computation in the thread we are verifying.

The invariant rule. The simplest (and oldest) way in which

concurrent program logics account for such interference is via

invariants [5]. An invariant is a property that holds of some piece of

shared state at all times: each thread accessing the state may assume

the invariant holds before each step of its computation, but it must

also ensure that it continues to hold after each step.

Formally, in concurrent separation logics, the invariant rule looks

something like the following (omitting some important details that

we explain later in §4):

{R ∗ P } e
{R ∗Q}

e physically atomic

R ` {P } e
{Q}

Here, the assertion R states the knowledge that there exists an

invariant R governing some piece of shared state. Given this

knowledge, the rule tells us that e may gain (exclusive) control of

the shared state satisfying R, so long as it ensures that R continues

to hold of it when it is finished executing. Note the crucial side

condition that e be physically atomic, meaning that it takes exactly

one step of computation. If e were not physically atomic, then

another thread might access the shared state governed by R during

e’s execution, in which case it would not be safe for the rule to grant

e exclusive control of the shared state throughout its execution.

1 There is much recent work on weaker models of concurrency, which are in

many ways more realistic, but in this paper we focus on SC concurrency.

1

Higher-Order Ghost State
Ralf Jung

MPI-SWS, Germanyjung@mpi-sws.org

Robbert KrebbersAarhus University, Denmarkmail@robbertkrebbers.nl

Lars BirkedalAarhus University, Denmarkbirkedal@cs.au.dk

Derek DreyerMPI-SWS, Germanydreyer@mpi-sws.org

Abstract
The development of concurrent separation logic (CSL) has sparked a

long line of work on modular verification of sophisticated concurrent

programs. Two of the most important features supported by several

existing extensions to CSL are higher-order quantification and

custom ghost state. However, none of the logics that support both

of these features reap the full potential of their combination. In

particular, none of them provide general support for a feature we

dub “higher-order ghost state”: the ability to store arbitrary higher-

order separation-logic predicates in ghost variables.

In this paper, we propose higher-order ghost state as a interesting

and useful extension to CSL, which we formalize in the framework

of Jung et al.’s recently developed Iris logic. To justify its soundness,

we develop a novel algebraic structure called CMRAs (“cameras”),

which can be thought of as “step-indexed partial commutative

monoids”. Finally, we show that Iris proofs utilizing higher-order

ghost state can be effectively formalized in Coq, and discuss the

challenges we faced in formalizing them.
Categories and Subject Descriptors D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-

ings of Programs]: Specifying and Verifying and Reasoning about

Programs
Keywords Separation logic, fine-grained concurrency, higher-

order logic, compositional verification, interactive theorem proving

1. IntroductionOver a decade ago, O’Hearn made a critical observation: separation

logic—developed to simplify the verification of sequential, heap-

manipulating programs—can help simplify the verification of con-

current programs as well. In concurrent separation logic (CSL) [28],

assertions denote not only facts about the state of the program, but

also ownership of a piece of that state. Concretely, this means that

if a thread t can assert ` 7→ v, then t knows not only that location

` currently points to v, but also that it “owns” `, so no other thread

can read or write ` concurrently. Given this ownership assertion, t

can perform local (and essentially sequential) reasoning on accesses

to `, completely ignoring concurrently operating threads.

Of course at some point threads have to communicate through

some kind of shared state (such as a mutable heap or message-

passing channels). To reason modularly about such communication,

the original CSL used a simple form of resource invariants, which
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact

the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)

869-0481.
ICFP ’16, September 18–22, 2016, Nara, Japan.

Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4219-3/16/09. . . $15.00.

DOI: http://dx.doi.org/10.1145/2951913.2951943

were tied to a “conditional critical region” construct for synchro-

nization. Since O’Hearn’s pioneering (and Gödel-award-winning)

paper, there has been an avalanche of follow-on work extending

CSL with more sophisticated mechanisms for modular reasoning,

which allow shared state to be accessed at a finer granularity (e.g.,

atomic compare-and-swap instructions) and which support the ver-

ification of more “daring” (less clearly synchronized) concurrent

programs [40, 17, 16, 13, 18, 38, 35, 27, 11, 24].

In this paper, we focus on two of the most important extensions

to CSL—higher-order quantification and custom ghost state—and

observe that, although several logics support both of these exten-

sions, none of them reap the full potential of their combination. In

particular, none of them provide general support for a feature we

dub “higher-order ghost state”.
Higher-order quantification is the ability to quantify logical

assertions (universally and existentially) over other assertions and,

in general, over arbitrary higher-order predicates. Several recent

extensions to CSL have incorporated higher-order quantification [36,

35, 24, 21, 27], in part because it leads to more generic and reusable

specifications of concurrent data structures (see §4), and in part

because it is seemingly necessary for verifying some higher-order

concurrency paradigms [35, 38, 31].
Ghost state is “logical state”, i.e., state that is essential to

maintain in the proof of a program but is not part of the physical state

manipulated by the program itself. It is a fixture of Hoare logics since

the work of Owicki and Gries [29] in the 1970s, and is useful for

a variety of purposes: for encoding various kinds of “permissions”,

for recording information about the trace of the computation, for

describing “protocols” on how threads may interact with shared

state, and more. Traditionally, ghost state was manipulated by

instrumenting a program with updates to “ghost” (or “auxiliary”)

variables. Although this approach is convenient for integration into

automatic verification tools [10], it is unnecessarily low-level: there

is no reason logical state needs to be manipulated in exactly the

same way as physical state, and doing so makes it harder to reason

about updates to shared logical state in a modular fashion.

Recently, a number of researchers have argued that a more high-

level, general, and flexible way to represent ghost state is via partial

commutative monoids (PCMs). Intuitively, PCMs are a natural

fit for ghost state because they impose only the bare minimum

requirements on something that should be “ownable” in a separation

logic, while leaving lots of room for proof-specific customization.

Several newer extensions to CSL [24, 27, 12] thus give users the

freedom to define ghost state on a per-proof basis in terms of an

arbitrary PCM of their choosing. Furthermore, the Iris logic [24] has

established that PCMs (together with simple invariants) are flexible

enough to derive several advanced reasoning mechanisms that were

built in as primitive in prior logics.
Unfortunately, a limitation arises when one uses PCMs to support

custom ghost state in the context of a logic with higher-order

quantification. Specifically, PCMs yield a model of ghost state that

is first-order. By this we mean that there is an inherent stratification:
1

Strong Logic for Weak Memory: Reas
oning About

Release-A
cquire Consisten

cy in Iris∗†

Jan-Oliver Kaiser1 , Hoang-Hai Dang2 , Derek Dreyer3 , Ori Lahav4 ,

and Viktor Vafeiadis5

1 MPI-SWS, Saarbrücken and Kaiserslautern, Germany‡

janno@mpi-sws.org

2 MPI-SWS, Saarbrücken and Kaiserslautern, Germany†

haidang@mpi-sws.org

3 MPI-SWS, Saarbrücken and Kaiserslautern, Germany†

dreyer@mpi-sws.org

4 MPI-SWS, Saarbrücken and Kaiserslautern, Germany†

orilahav@mpi-sws.org

5 MPI-SWS, Saarbrücken and Kaiserslautern, Germany†

viktor@mpi-sws.org

Abstract

The field
of concurr

ent separa
tion logics (CS

Ls) has re
cently undergone

two exciting develop-

ments: (1) t
he Iris fra

mework for encodi
ng and unifying advanced

higher-ord
er CSLs a

nd formal-

izing them in Coq, and
(2) the adaptatio

n of CSLs t
o account fo

r weak memory models, not
ably

C11’s rele
ase-acquir

e (RA) co
nsistency.

Unfortuna
tely, these

developm
ents are s

eemingly incom-

patible, si
nce Iris on

ly applies to
languages

with an operation
al interlea

ving semantics, wh
ile C11

is defined
by a declarativ

e (axiomatic) semantics. In
this paper

, we show
that, on the contra

ry, it

is not onl
y feasible bu

t useful to
marry these deve

lopments toget
her. Our first st

ep is to provide

a novel ope
rational c

haracteriz
ation of RA+NA, the fragment of C11 containing

RA accesses

and “non-atom
ic” (normal data) a

ccesses. In
stantiatin

g Iris with this semantics, we
then derive

higher-ord
er variant

s of two prominent RA+
NA logics, GPS and RSL. Fina

lly, we deploy these

derived logics in order to perform the first m
echanical

verificatio
ns (in Coq) of se

veral inter
esting

case studies of
RA+NA programming. In a nutshell, w

e provide the first found
ationally

verified

framework for provin
g programs correct u

nder C11’
s weak-memory semantics.

1998 ACM Subject Classifica
tion F.3.1 Specifying

and Verifying
and Reasoning

about Pro-

grams; F.3.2 Semantics of P
rogramming Language

s

Keywords
and phrases Weak memory models, rele

ase-acquir
e, concurr

ency, sepa
ration logic

Digital O
bject Iden

tifier 10.4230/L
IPIcs.ECO

OP.2017.17

Supplementary Material ECOOP Artifact E
valuation

approved
artifact av

ailable at

http://dx.doi.org/10.4230/DARTS.3.2.15

∗ An extended
version of this pa

per with
a technical

appendix
can be found at [1].

† This resea
rch was suppo

rted in part by a European
Research

Council (E
RC) Cons

olidator G
rant for th

e

project “R
ustBelt”,

funded under the
European

Union’s H
orizon 2020 Framework Programme (grant

agreement no. 68
3289).

‡ Saarland
Informatics Cam

pus.

C
o
n
si
st
en

t *
Complete *

W
ell D

o
cu
m
ented*Easyto

Re

us
e
*

*
Evaluated*

EC
O
O
P
*
Ar

tifact *

A
E
C

© Jan-Oliver Kaiser, Ho
ang-Hai

Dang, D
erek Dreyer, O

ri Lahav
, and Viktor V

afeiadis;

licensed
under Cr

eative Commons Lice
nse CC-BY

31st Eur
opean Conferen

ce on Object-Oriented Program
ming (ECOOP 2017).

Editor: P
eter Müller; Ar

ticle No. 17; p
p. 17:1–1

7:29

Leibniz Internati
onal Pro

ceedings
in Informatics

Schloss D
agstuhl –

Leibniz-Z
entrum für Infor

matik, Da
gstuhl P

ublishing
, Germany

The Essence of
Higher-Order Concurrent Separation Logic

Robbert Krebbers1, Ralf Jung2, Aleš Bizjak3,

Jacques-Henri Jourdan2, Derek Dreyer2, and Lars Birkedal3

1
Delft University of Technology, The Netherlands

2
MPI-SWS, Saarland Informatics Campus, Germany

3
Aarhus University, Denmark

Abstract. Concurrent separation logics (CSLs) have come of age, and

with age they have accumulated a great deal of complexity. Previous

work on the Iris logic attempted to reduce the complex logical mecha-

nisms of modern CSLs to two orthogonal concepts: partial commutative

monoids (PCMs) and invariants. However, the realization of these con-

cepts in Iris still bakes in several complex mechanisms—such as weakest

preconditions and mask-changing view shifts—as primitive notions.

In this paper, we take the Iris story to its (so to speak) logical conclu-

sion, applying the reductionist methodology of Iris to Iris itself. Specifi-

cally, we define a small, resourceful base logic, which distills the essence

of Iris: it comprises only the assertion layer of vanilla separation logic,

plus a handful of simple modalities. We then show how the much fancier

logical mechanisms of Iris—in particular, its entire program specification

layer—can be understood as merely derived forms in our base logic. This

approach helps to explain the meaning of Iris’s program specifications

at a much higher level of abstraction than was previously possible. We

also show that the step-indexed “later” modality of Iris is an essential

source of complexity, in that removing it leads to a logical inconsistency.

All our results are fully formalized in the Coq proof assistant.

1 Introduction
In his paper The Next 700 Separation Logics, Parkinson [26] observed that “sep-

aration logic has brought great advances in the world of verification. However,

there is a disturbing trend for each new library or concurrency primitive to re-

quire a new separation logic.” He argued that what is needed is a general logic

for concurrent reasoning, into which a variety of useful specifications can be en-

coded via the abstraction facilities of the logic. “By finding the right core logic,”

he wrote, “we can concentrate on the difficult problems.”

The logic he suggested as a potential candidate for such a core concurrency

logic was deny-guarantee [12]. Deny-guarantee was indeed groundbreaking in its

support for “fictional separation”—the idea that even if threads are concurrently

manipulating the same shared piece of physical state, one can view them as oper-

ating on logically disjoint pieces of it and use separation logic to reason modularly

about those pieces. It was, however, far from the last word on the subject. Rather,

A Higher-Order Logic for Concurrent

Termination-Preserving Refinement

Joseph Tassarotti
1 , Ralf Jung2 , and Robert Harper1

1 Carnegie Mellon University, Pittsburgh, USA

2 MPI-SWS, Saarland Informatics Campus, Germany

Abstract. Compiler correctness proofs for higher-order concurrent lan-

guages are difficult: they involve establishing a termination-preserving

refinement between a concurrent high-level source language and an im-

plementation that uses low-level shared memory primitives. However,

existing logics for proving concurrent refinement either neglect proper-

ties such as termination, or only handle first-order state. In this paper,

we address these limitations by extending Iris, a recent higher-order con-

current separation logic, with support for reasoning about termination-

preserving refinements. To demonstrate the power of these extensions,

we prove the correctness of an efficient implementation of a higher-order,

session-typed language. To our knowledge, this is the first program logic

capable of giving a compiler correctness proof for such a language. The

soundness of our extensions and our compiler correctness proof have been

mechanized in Coq.

1 Introduction

Parallelism and concurrency impose great challenges on both programmers and

compilers. In order to make compiled code more efficient and help programmers

avoid errors, languages can provide type systems or other features to constrain

the structure of programs and provide useful guarantees. The design of these

kinds of concurrent languages is an active area of research. However, it is fre-

quently difficult to prove that efficient compilers for these languages are correct,

and that important properties of the source-level language are preserved under

compilation.

For example, in work on session types [19, 45, 17, 10, 42], processes com-

municate by sending messages over channels. These channels are given a type

which describes the kind of data sent over the channel, as well as the order in

which each process sends and receives messages. Often, the type system in these

languages ensures the absence of undesired behaviors like races and deadlocks;

for instance, two threads cannot both be trying to send a message on the same

channel simultaneously.

Besides preventing errors, the invariants enforced by session types also per-

mit these language to be compiled efficiently to a shared-memory target lan-

guage [43]. For example, because only one thread can be sending a message

On Models of Higher-Order Separation Logic
Aleš Bizjak1

Lars Birkedal2
Department of Computer Science, Aarhus University, Denmark

Abstract
We show how tools from categorical logic can be used to give a general account of models of higher-order

separation logic with a sublogic of so-called persistent predicates satisfying the usual rules of higher-order

logic. The models of separation logic are based on a notion of resource, a partial commutative monoid, and

the persistent predicates can be defined using a modality. We classify well-behaved sublogics of persistent

predicates in terms of interior operators on the partial commutative monoid of resources. We further show

how the general constructions can be used to recover the model of Iris, a state-of-the-art higher-order

separation logic with guarded recursive predicates.

Keywords: separation logic, model, modalities

1 Introduction
In recent years we have seen many models of variations of higher-order separation

logic, e.g., [4,14,6,3,1,16,10,9,11]. Separation logic is a substructural logic and the

models are all based on some notion of resource. Originally, resources were heap

fragments, and predicates in the logic described sets of heaps. For instance, the

points-to predicate � �→ 3 described those heaps that contain the value 3 at location

�. Later on, more elaborate notions of resources were used because they allow for

stronger specifications and they can be used to keep track of data and relationships

not explicitly given in the program code.

With these richer notions of resources it has often been noticed that it is very

useful to be also able to single out and work with predicates that are “persistent”.

Persistent predicates are, in particular, duplicable (meaning P � P ⇔ P), and

they obey more standard (not substructural) logical rules. One way this has been

achieved is via a modality � (pronounced always) which is a necessity-like modality

and obeys rules akin to those obeyed by the bang modality ! of linear logic. Such a

1
Email: abizjak@cs.au.dk

2
Email: birkedal@cs.au.dk

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 336 (2018) 57–78

1571-0661/© 2018 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.03.016This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

89

Robust and Compositional Verification of Object

Capability Patterns

DAVID SWASEY, MPI-SWS, Germany

DEEPAK GARG, MPI-SWS, Germany

DEREK DREYER, MPI-SWS, Germany

In scenarios such as web programming, where code is linked together from multiple sources, object capability

patterns (OCPs) provide an essential safeguard, enabling programmers to protect the private state of their

objects from corruption by unknown and untrusted code. However, the benefits of OCPs in terms of program

verification have never been properly formalized. In this paper, building on the recently developed Iris

framework for concurrent separation logic, we develop OCPL, the first program logic for compositionally

specifying and verifying OCPs in a language with closures, mutable state, and concurrency. The key idea

of OCPL is to account for the interface between verified and untrusted code by adopting a well-known

idea from the literature on security protocol verification, namely robust safety. Programs that export only

properly wrapped values to their environment can be proven robustly safe, meaning that their untrusted

environment cannot violate their internal invariants. We use OCPL to give the first general, compositional,

and machine-checked specs for several commonly-used OCPsÐincluding the dynamic sealing, membrane, and

caretaker patternsÐwhich we then use to verify robust safety for representative client code. All our results are

fully mechanized in the Coq proof assistant.

CCS Concepts: • Security and privacy → Security requirements; • Theory of computation → Program

specifications; Separation logic;

Additional Key Words and Phrases: object capabilities, robust safety, separation logic, logical relations, compo-

sitional verification

ACM Reference Format:

David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and Compositional Verification of Object

Capability Patterns. Proc. ACM Program. Lang. 1, OOPSLA, Article 89 (October 2017), 26 pages. https://doi.org/

10.1145/3133913

1 INTRODUCTION

Suppose you have a mutable reference ℓ whose contents you care about, meaning that you want to

impose some invariant on it (e.g., ℓ always points to an even number). Suppose further that you

want to share access to ℓ with code you did not write and that you do not trust to preserve the

invariant on ℓ. To ensure the invariant on ℓ is maintained, you therefore do not want to pass the

untrusted code the reference ℓ directly. Instead, you might construct a read-only wrapper w as

follows:
readonly ≜ λr . λ .

!r

w ≜ readonly ℓ

Authors’ addresses: MPI-SWS, Saarland Informatics Campus (SIC), Campus E1.5, 66123 Saarbrücken, Germany, {swasey, dg,

dreyer}@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2017 Copyright held by the owner/author(s).

2475-1421/2017/10-ART89

https://doi.org/10.1145/3133913

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 89. Publication date: October 2017.
This work is licensed under a Creative Commons Attribution 4.0 International License.

A Relational Model of Types-and-Effects in

Higher-Order Concurrent Separation Logic

Morten Krogh-JespersenAarhus University, Denmarkmkj@cs.au.dk
Kasper SvendsenUniversity of Cambridge, UKks775@cl.cam.ac.uk

Lars BirkedalAarhus University, Denmarkbirkedal@cs.au.dk

Abstract
Recently we have seen a renewed interest in programming lan-

guages that tame the complexity of state and concurrency through

refined type systems with more fine-grained control over effects. In

addition to simplifying reasoning and eliminating whole classes of

bugs, statically tracking effects opens the door to advanced com-

piler optimizations.In this paper we present a relational model of a type-and-effect

system for a higher-order, concurrent programming language. The

model precisely captures the semantic invariants expressed by the

effect annotations. We demonstrate that these invariants are strong

enough to prove advanced program transformations, including au-

tomatic parallelization of expressions with suitably disjoint effects.

The model also supports refinement proofs between abstract data

type implementations with different internal data representations,

including proofs that fine-grained concurrent algorithms refine their

coarse-grained counterparts. This is the first model for such an ex-

pressive language that supports both effect-based optimizations and

data abstraction.The logical relation is defined in Iris, a state-of-the-art higher-

order concurrent separation logic. This greatly simplifies proving

well-definedness of the logical relation and provides us with a

powerful logic for reasoning in the model.
Categories and Subject Descriptors D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory; F.3.1 [Logics and mean-

ings of programs]: Specifying and Verifying and Reasoning about

Programs
Keywords Separation logic, type-and-effect system, logical rela-

tions, program transformation, automatic parallelisation
1. IntroductionProgramming with and reasoning about effects in higher-order pro-

grams is well-known to be very challenging. Over the years, there

have therefore been many proposals of refined type systems for

taming and simplifying reasoning about effectful programs. Exam-

ples include alias types [28], capability type systems [23], linear

type systems [14, 17, 20] Hoare type theory [21], permissions-

based type systems [24], type-and-effect systems [5, 6, 15, 19],

etc. Lately, we have also witnessed some larger-scale implemen-

tation efforts on higher-order programming languages, e.g., the

Mezzo programming language [24] and the Rust programming lan-

guage [27], which employ refined type systems to control the use

of state in the presence of concurrency.
In this paper, we provide a logical account of an expressive

region-based type-and-effect system for a higher-order concurrent

programming language λref,conc with general references (higher-

order store). The type-and-effect system is taken from [11]; it is

inspired by Lucassen and Gifford’s seminal work [15, 19], but also

features a notion of public and private regions, which can be used to

limit interference from threads running in parallel. Hence it can be

used to express effect-based optimizations, as emphasized for type-

and-effect systems for sequential languages by Benton et al., see,

e.g., [5, 6]. Effect-based optimizations are examples of so-called

“free theorems”, i.e., they just depend on the types and effects

of the involved expressions, not on the particular expressions in-

volved. The most interesting effect-based optimization is a paral-

lelization theorem expressing the equivalence of running expres-

sions e1 and e2 in parallel and running them sequentially, assuming

their effects are suitably disjoint. Note that this is a relational prop-

erty, i.e., the intended invariants of the type-and-effect system are

relational in nature. Our logical account of the type-and-effect sys-

tem thus consists of a logical relations interpretation of the types

in a program logic, and we prove that logical relatedness implies

contextual equivalence. We show that our logical relations inter-

pretation is strong enough to prove the soundness of effect-based

optimizations, in particular the challenging parallelization theorem.

Since the programming language λref,conc includes higher-order

store, it is non-trivial to define a logical relations interpretation of

the types, as one is faced with the well-known type-world circular-

ity [1] (see [10] for an overview). Here we factor out this challenge,

by using a state-of-the-art program logic, Iris [16], as the logic in

which we express the logical relations. Iris has direct support for

impredicative invariants, as needed for defining logical relations

for general references. Iris also supports reasoning about concur-

rency; in particular, it supports a form of rely-guarantee reasoning

about shared state. We use this facility to capture invariants of pri-

vate and public regions. Moreover, we show, using simple synthetic

examples, how we can also use the logic to prove that syntactically

ill-typed programs obey the semantic invariants enforced by the

type system. This is important in practice: both Mezzo and Rust

contain facilities for programming with statically ill-typed expres-

sions (Mezzo uses dynamic type checks [25] and Rust allows for

including unsafe code in statically typed programs [27]) thus mod-

els of type-and-effect systems should preferably support reasoning

about combinations of statically ill-typed and statically well-typed

programs.

C
o
n
si
st
en

t *
Complete *

W
ell D

o
cu
m
ented*Easyto

Re

us
e
*

*
Evaluated*

PO
P
L
*
A

rtif
act

*

A
E
C

Interactive Proofs in Higher-Order

Concurrent Separation Logic

Robbert Krebbers∗

Delft University of Technology,

The Netherlands

mail@rob
bertkre

bbers.n
l

Amin Timany

imec-Distrinet, KU Leuven, Belgium

amin.timany@cs
.kuleuv

en.be

Lars Birkedal

Aarhus University, Denmark

birkeda
l@cs.au

.dk

Abstract

When using a proof assistant to reason in an embedded logic – like

separation logic – one cannot benefit from the proof contexts and

basic tactics of the proof assistant. This results in proofs that are

at a too low level of abstraction because they are cluttered with

bookkeeping code related to manipulating the object logic.

In this paper, we introduce a so-called proof mode that extends

the Coq proof assistant with (spatial and non-spatial) named proof

contexts for the object logic. We show that thanks to these contexts

we can implement high-level tactics for introduction and elimination

of the connectives of the object logic, and thereby make reasoning

in the embedded logic as seamless as reasoning in the meta logic of

the proof assistant. We apply our method to Iris: a state of the art

higher-order impredicative concurrent separation logic.

We show that our method is very general, and is not just limited to

program verification. We demonstrate its generality by formalizing

correctness proofs of fine-grained concurrent algorithms, derived

constructs of the Iris logic, and a unary and binary logical relation

for a language with concurrency, higher-order store, polymorphism,

and recursive types. This is the first formalization of a binary logical

relation for such an expressive language. We also show how to use

the logical relation to prove contextual refinement of fine-grained

concurrent algorithms.

Categories and Subject Descriptors D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-

ings of Programs]: Specifying and Verifying and Reasoning about

Programs

Keywords Separation Logic, Interactive Theorem Proving, Coq,

Fine-grained Concurrency, Logical Relations

1. Introduction

In the last decade, there has been tremendous progress on program

logics for increasingly sophisticated programming languages [43,

17, 16, 13, 18, 42, 40, 11, 31, 24, 23, 26]. Part of the success of

these logics stems from the fact that they have built-in support for

reasoning about challenging programming language features. For

∗ This research was carried out while this author was at Aarhus University.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact

the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)

869-0481.

POPL ’17, January 18 - 20, 2017, Paris, France

Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4660-3/17/01. . . $15.00.

DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3009837.3009855

instance, they include separating conjunction of separation logic for

reasoning about mutable data structures, invariants for reasoning

about sharing, guarded recursion for reasoning about various forms

of recursion, and higher-order quantification for giving generic

modular specifications to libraries.

Due to these built-in features, modern program logics are very

different from the logics of general purpose proof assistants. There-

fore, to use a proof assistant to formalize reasoning in a program

logic, one needs to represent the program logic in that proof assis-

tant, and then, to benefit from the built-in features of the program

logic, use the proof assistant to reason in the embedded logic.

Reasoning in an embedded logic using a proof assistant tradition-

ally results in a lot of overhead. Most of this overhead stems from

the fact that when embedding a logic, one can no longer make use

of the proof assistant’s infrastructure for managing hypotheses. In

separation logic this overhead is evident from the fact that proposi-

tions represent resources (they are spatial) and can thus be used at

most once, which is very different from hypotheses in conventional

logic that can be duplicated at will.

To remedy this situation, we present a so-called proof mode that

extends the Coq proof assistant with (spatial and non-spatial) named

contexts for managing the hypotheses of the object logic. We show

that using our proof mode we can make reasoning in the embedded

logic as seamless as reasoning in the meta logic of Coq. Although

we believe that our proof mode is very generic, and can be applied

to a variety of different embedded logics, we apply it to a specific

logic in this paper, Iris: a state of the art impredicative higher-order

separation logic for fine-grained concurrency [24, 23, 26]. We call

the implementation on top of Iris IPM: Iris Proof Mode.

Iris is an interesting showcase for our proof mode, because

unlike conventional program logics, it cannot only be used to

reason about partial program correctness, but it also supports other

kinds of reasoning. For starters, Iris differs from other (concurrent)

program logics by not baking in particular reasoning principles,

but by providing a minimal set of primitive constructs using which

more advanced reasoning constructs can be defined in the logic.

Furthermore, Iris can be used to define unary and binary relational

interpretations of type systems and for proving theorems about those

interpretations, e.g., that if two terms are related in the relational

interpretation of a type, then they are contextually equivalent.

The type systems can range from ML-like type systems, such

as Fµ,ref ,con
c (System F with recursive types, references, and

concurrency), to more expressive type-and-effect systems [27], or

sophisticated ownership-based type systems such as the Rust type

system [14]. We show that IPM supports all of these different kinds

of reasoning.

One may wonder why we develop a reasoning tool for a logic

like Iris in a general purpose proof assistant, instead of building a

standalone tool. The main reason for using a proof assistant is that

77

MoSeL: A General, Extensible Modal Framework for

Interactive Proofs in Separation Logic
ROBBERT KREBBERS, Delft University of Technology, The Netherlands

JACQUES-HENRI JOURDAN, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, France

RALF JUNG, MPI-SWS, Germany
JOSEPH TASSAROTTI, Carnegie Mellon University, USA

JAN-OLIVER KAISER, MPI-SWS, Germany

AMIN TIMANY, imec-Distrinet, KU Leuven, Belgium

ARTHUR CHARGUÉRAUD, Inria & Université de Strasbourg, CNRS, ICube, France

DEREK DREYER, MPI-SWS, Germany
A number of tools have been developed for carrying out separation-logic proofs mechanically using an

interactive proof assistant. One of the most advanced such tools is the Iris Proof Mode (IPM) for Coq, which

offers a rich set of tactics for making separation-logic proofs look and feel like ordinary Coq proofs. However,

IPM is tied to a particular separation logic (namely, Iris), thus limiting its applicability.

In this paper, we propose MoSeL, a general and extensible Coq framework that brings the benefits of IPM to

a much larger class of separation logics. Unlike IPM, MoSeL is applicable to both affine and linear separation

logics (and combinations thereof), and provides generic tactics that can be easily extended to account for the

bespoke connectives of the logics with which it is instantiated. To demonstrate the effectiveness of MoSeL, we

have instantiated it to provide effective tactical support for interactive and semi-automated proofs in six very

different separation logics.CCS Concepts: • Theory of computation → Logic and verification; Separation logic; Program verifi-

cation;
Additional Key Words and Phrases: Separation logic, logic of bunched implications, modal logic, Coq proof

assistant, interactive theorem proving
ACM Reference Format:Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany,

Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive

Proofs in Separation Logic. Proc. ACM Program. Lang. 2, ICFP, Article 77 (September 2018), 30 pages. https:

//doi.org/10.1145/32367721 INTRODUCTIONOver the past 20 years, separation logic [O’Hearn et al. 2001; Reynolds 2002] has come to play an

essential role in the program verification toolbox, with a wide range of variations and applications.

Authors’ addresses: Robbert Krebbers, Delft University of Technology, mail@robbertkrebbers.nl; Jacques-Henri Jour-

dan, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, jacques-henri.jourdan@lri.fr; Ralf Jung, MPI-SWS∗, jung@mpi-

sws.org; Joseph Tassarotti, Carnegie Mellon University, jtassaro@andrew.cmu.edu; Jan-Oliver Kaiser, MPI-SWS∗,

janno@mpi-sws.org; Amin Timany, imec-Distrinet, KU Leuven, amin.timany@cs.kuleuven.be; Arthur Charguéraud, Inria,

arthur.chargueraud@inria.fr; Derek Dreyer, MPI-SWS∗, dreyer@mpi-sws.org.

∗ Saarland Informatics Campus.Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART77https://doi.org/10.1145/3236772

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 77. Publication date: September 2018.

78

Mtac2: Typed Tactics for Backward Reasoning in Coq

JAN-OLIVER KAISER, MPI-SWS, Germany

BETA ZILIANI, CONICET and FAMAF, UNC, Argentina

ROBBERT KREBBERS, Delft University of Technology, The Netherlands

YANN RÉGIS-GIANAS, IRIF, CNRS, Paris Diderot, and INRIA PI.R2, France

DEREK DREYER, MPI-SWS, Germany

Coq supports a range of built-in tactics, which are engineered primarily to support backward reasoning. Starting

from a desired goal, the Coq programmer can use these tactics to manipulate the proof state interactively,

applying axioms or lemmas to break the goal into subgoals until all subgoals have been solved. Additionally, it

provides support for tactic programming via OCaml and Ltac, so that users can roll their own custom proof

automation routines.

Unfortunately, though, these tactic languages share a significant weakness. They do not offer the tactic pro-

grammer any static guarantees about the soundness of their custom tactics, making large tactic developments

difficult to maintain. To address this limitation, Ziliani et al. previously proposed Mtac, a new typed approach

to custom proof automation in Coq which provides the static guarantees that OCaml and Ltac are missing.

However, despite its name, Mtac is really more of a metaprogramming language than it is a full-blown tactic

language: it misses an essential feature of tactic programming, namely the ability to directly manipulate Coq’s

proof state and perform backward reasoning on it.

In this paper, we present Mtac2, a next-generation version of Mtac that combines its support for typed

metaprogramming with additional support for the programming of backward-reasoning tactics in the style

of Ltac. In so doing, Mtac2 introduces a novel feature in tactic programming languages—what we call typed

backward reasoning. With this feature, Mtac2 is capable of statically ruling out several classes of errors that

would otherwise remain undetected at tactic definition time. We demonstrate the utility of Mtac2’s typed

tactics by porting several tactics from a large Coq development, the Iris Proof Mode, from Ltac to Mtac2.

CCS Concepts: • Theory of computation → Type theory; Proof theory;

Additional Key Words and Phrases: Theorem Proving, Tactic Languages, Metaprogramming, Dependent Types,

Coq

ACM Reference Format:

Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas, and Derek Dreyer. 2018. Mtac2: Typed

Tactics for Backward Reasoning in Coq. Proc. ACM Program. Lang. 2, ICFP, Article 78 (September 2018),

31 pages. https://doi.org/10.1145/3236773

1 INTRODUCTION

The Coq proof assistant provides a rich dependently-typed framework in which to formalize

mathematics and programming language metatheory. Although Coq proofs ultimately compile

down to proof terms in the language of Type Theory, it is not practical for Coq programmers to

Authors’ addresses: Jan-Oliver Kaiser, MPI-SWS∗ , janno@mpi-sws.org; Beta Ziliani, CONICET and FAMAF, UNC,

beta@mpi-sws.org; Robbert Krebbers, Delft University of Technology, mail@robbertkrebbers.nl; Yann Régis-Gianas, IRIF,

CNRS, Paris Diderot, and INRIA PI.R2, yrg@pps.univ-paris-diderot.fr; Derek Dreyer, MPI-SWS∗ , dreyer@mpi-sws.org.

∗ Saarland Informatics Campus.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART78

https://doi.org/10.1145/3236773

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 78. Publication date: September 2018.

ZU064-05-FPR paper 2 October 2018 10:44

Under consideration for publication in J. Functional Programming

1Iris from the ground up
A modular foundation for higher-order concurrent separation logicRALF JUNGMPI-SWS, Germany(e-mail: jung@mpi-sws.org)ROBBERT KREBBERS

Delft University of Technology, The Netherlands

(e-mail: mail@robbertkrebbers.nl)JACQUES-HENRI JOURDANMPI-SWS, Germany
(e-mail: jjourdan@mpi-sws.org)ALEŠ BIZJAKAarhus University, Denmark
(e-mail: abizjak@cs.au.dk)LARS BIRKEDALAarhus University, Denmark

(e-mail: birkedal@cs.au.dk)DEREK DREYERMPI-SWS, Germany(e-mail: dreyer@mpi-sws.org)

Abstract
Iris is a framework for higher-order concurrent separation logic, which has been implemented in the

Coq proof assistant and deployed very effectively in a wide variety of verification projects. Iris was

designed with the express goal of simplifying and consolidating the foundations of modern separation

logics, but it has evolved over time, and the design and semantic foundations of Iris itself have yet

to be fully written down and explained together properly in one place. Here, we attempt to fill this

gap, presenting a reasonably complete picture of the latest version of Iris (version 3.1), from first

principles and in one coherent narrative.

1 Introduction

Iris is a framework for higher-order concurrent separation logic, implemented in the Coq

proof assistant, which we and a growing network of collaborators have been developing

actively since 2014. It is the only verification tool proposed so far that supports

• foundational machine-checked proofs of

• deep correctness properties for

ReLoC: A Mechanised Relational Logic for Fine-Grained

Concurrency

Dan Frumin

Radboud University

dfrumin@cs.ru.nl

Robbert Krebbers

Delft University of Technology

mail@robbertkrebbers.nl

Lars Birkedal

Aarhus University

birkedal@cs.au.dk

Abstract

We present ReLoC: a logic for proving refinements of programs in

a language with higher-order state, fine-grained concurrency, poly-

morphism and recursive types. The core of our logic is a judgement

e ≾ e′ : τ , which expresses that a program e refines a program e′

at type τ . In contrast to earlier work on refinements for languages

with higher-order state and concurrency, ReLoC provides type- and

structure-directed rules for manipulating this judgement, whereas

previously, such proofs were carried out by unfolding the judge-

ment into its definition in the model. These more abstract proof

rules make it simpler to carry out refinement proofs.

Moreover, we introduce logically atomic relational specifications:

a novel approach for relational specifications for compound expres-

sions that take effect at a single instant in time. We demonstrate

how to formalise and prove such relational specifications in ReLoC,

allowing for more modular proofs.

ReLoC is built on top of the expressive concurrent separation

logic Iris, allowing us to leverage features of Iris such as invariants

and ghost state. We provide a mechanisation of our logic in Coq,

which does not just contain a proof of soundness, but also tactics

for interactively carrying out refinements proofs. We have used

these tactics to mechanise several examples, which demonstrates

the practicality and modularity of our logic.

CCS Con
cepts • Theory of computation → Logic and verifi-

cation; Separation logic; Concurrency; Program verification;

Keyword
s Separation logic, logical relations, fine-grained concur-

rency, Iris, atomicity

ACM Reference Format:

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A Mech-

anised Relational Logic for Fine-Grained Concurrency. In LICS ’18: LICS

’18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, July

9–12, 2018, Oxford, United Kingdom. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3209108.3209174

1 Introduction

Recall that an expression e contextually refines e′ if, for all contexts

C, if C[e] has some observable behaviour, then so does C[e′], and

that e and e′ are contextually equivalent if e contextually refines e′

and vice versa. Contextual equivalence and contextual refinement

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00

https://doi.org/10.1145/3209108.3209174

read ≜ λx (). !x

incs ≜ λx l . acquire l ; letn
= !x inx ← 1 + n; release l ; n

counters ≜ let l =
newlock () in letx

= ref(0) in

(read x , λ(). incs x l)

inci ≜ rec inc x = let c =
!x in

if CAS(x , c, 1
+ c) then c e

lse inc x

counteri ≜ letx =
ref(0) in (re

ad x , λ(). inci x)

Figure 1. Two concurrent counter implementations.

are often referred to as the gold standards of equivalence and refine-

ment of program expressions: contextual equivalence of e and e′

means that it is safe for a compiler to replace any occurrence of e by

e′ , and contextual refinement is often used to specify the behaviour

of programs, e.g., one can show the correctness of a fine-grained

concurrent implementation of an abstract data type by proving that

it contextually refines a coarse-grained implementation, which is

understood as the specification.

A simple example is the specification of a fine-grained concur-

rent counter by a coarse-grained version, counteri ≾ counters :

(1→ N) × (1→ N), see Figure 1 for the code. The increment oper-

ation of the coarse-grained version, counters is performed inside a

critical section guarded by a lock, whereas the fine-grained version,

counteri , takes an “optimistic” lock-free approach to incrementing

the value using a compare-and-set inside a loop. We will use the

counter as a simple running example throughout the paper. Proving

program refinements and equivalence directly is difficult because of

the quantification over all contexts. As such, it is often the case that

reasoning is done using the technique of logical relations. For pro-

gramming languages with features such as impredicative polymor-

phism, recursive types, higher-order state, and concurrency logical

relations models can be quite intricate. Such models usually involve

recursively defined worlds (constructed using step-indexing) and

various forms of resource accounting [2, 4, 5, 10]. To simplify both

the definition and the application of logical relations, logical ap-

proaches to logical relations have been invented, for increasingly

richer programming languages [13, 15, 26, 28].

A very recent publication [23], which is the basis for our work,

shows how logical relations for Fµ,ref,conc, a language with im-

predicative polymorphism, recursive types, general references, and

concurrency, can be defined in a state-of-the-art higher-order con-

current separation logic Iris [19–22].

Iris supports impredicative concurrent abstract predicates [12,

27] and includes general forms of ghost state which can be used

both for the definition of binary logical relations and for reasoning

about challenging program equivalences. The meta-theory of Iris is

64

A Logical Relation for Monadic Encapsulation of State

Proving contextual equivalences in the presence of runST
AMIN TIMANY, imec-Distrinet, KU Leuven, Belgium

LÉO STEFANESCO∗, IRIF, Université Paris Diderot & CNRS, France

MORTEN KROGH-JESPERSEN, Aarhus University, Denmark

LARS BIRKEDAL, Aarhus University, Denmark
We present a logical relations model of a higher-order functional programming language with impredicative

polymorphism, recursive types, and a Haskell-style ST monad type with runST. We use our logical relations

model to show that runST provides proper encapsulation of state, by showing that effectful computations

encapsulated by runST are heap independent. Furthermore, we show that contextual refinements and equiva-

lences that are expected to hold for pure computations do indeed hold in the presence of runST. This is the

first time such relational results have been proven for a language with monadic encapsulation of state. We

have formalized all the technical development and results in Coq.

CCS Concepts: • Theory of computation → Programming logic; Separation logic; Functional con-

structs; Type structures; Logic and verification; Invariants;

Additional Key Words and Phrases: ST Monad, Logical Relations, Functional Programming Languages, Theory

of Programming Languages, Program Logics, Iris
ACM Reference Format:Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2018. A Logical Relation for Monadic

Encapsulation of State: Proving contextual equivalences in the presence of runST. Proc. ACM Program. Lang.

2, POPL, Article 64 (January 2018), 28 pages. https://doi.org/10.1145/3158152

1 INTRODUCTIONHaskell is often considered a pure functional programming language because effectful computations

are encapsulated using monads. To preserve purity, values usually cannot escape from those monads.

One notable exception is the ST monad, introduced by Launchbury and Peyton Jones [1994]. The

ST monad comes equipped with a function runST : (∀β , ST β τ) → τ that allows a value to escape

from the monad: runST runs a stateful computation of the monadic type ST β τ and then returns

the resulting value of type τ . In the original paper [Launchbury and Peyton Jones 1994], the authors

argued informally that the ST monad is “safe”, in the sense that stateful computations are properly

encapsulated and therefore the purity of the functional language is preserved.

∗Most of this work was done while this author was at ENS Lyon
Authors’ addresses: Amin Timany, Computer Science, imec-Distrinet, KU Leuven, Celestijnenlaan 200A, Heverlee, 3001,

Belgium, amin.timany@cs.kuleuven.be; Léo Stefanesco, IRIF, Université Paris Diderot & CNRS, 8 Place Aurélie Nemours,

75013, Paris, France, leo.lveb@gmail.com; Morten Krogh-Jespersen, Computer Science, Aarhus University, Denmark,

mkj@cs.au.dk; Lars Birkedal, Computer Science, Aarhus University, Denmark, birkedal@cs.au.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2018 Copyright held by the owner/author(s).

2475-1421/2018/1-ART64https://doi.org/10.1145/3158152
Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 64. Publication date: January 2018.

66

RustBelt: Securing the Foundations of the Rust

Programming Language

RALF JUNG, MPI-SWS, Germany

JACQUES-HENRI JOURDAN, MPI-SWS, Germany

ROBBERT KREBBERS, Delft University of Technology, The Netherlands

DEREK DREYER, MPI-SWS, Germany

Rust is a new systems programming language that promises to overcome the seemingly fundamental tradeoff

between high-level safety guarantees and low-level control over resource management. Unfortunately, none

of Rust’s safety claims have been formally proven, and there is good reason to question whether they actually

hold. Specifically, Rust employs a strong, ownership-based type system, but then extends the expressive power

of this core type system through libraries that internally use unsafe features. In this paper, we give the first

formal (and machine-checked) safety proof for a language representing a realistic subset of Rust. Our proof is

extensible in the sense that, for each new Rust library that uses unsafe features, we can say what verification

condition it must satisfy in order for it to be deemed a safe extension to the language. We have carried out

this verification for some of the most important libraries that are used throughout the Rust ecosystem.

CCS Concepts: • Theory of computation → Programming logic; Separation logic; Operational semantics;

Additional Key Words and Phrases: Rust, separation logic, type systems, logical relations, concurrency

ACM Reference Format:

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: Securing the Foun-

dations of the Rust Programming Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (January 2018),

34 pages. https://doi.org/10.1145/3158154

1 INTRODUCTION

Systems programming languages like C and C++ give programmers low-level control over resource

management at the expense of safety, whereas most other modern languages give programmers safe,

high-level abstractions at the expense of control. It has long been a “holy grail” of programming

languages research to overcome this seemingly fundamental tradeoff and design a language that

offers programmers both high-level safety and low-level control.

Rust [Matsakis and Klock II 2014; Rust team 2017], developed at Mozilla Research, comes closer

to achieving this holy grail than any other industrially supported programming language to

date. On the one hand, like C++, Rust supports zero-cost abstractions for many common systems

programming idioms and avoids dependence on a garbage collector [Stroustrup 2012; Turon

2015a]. On the other hand, like most modern high-level languages, Rust is type-safe and memory-

safe. Furthermore, Rust’s type system goes beyond that of the vast majority of safe languages

in that it statically rules out data races (which are a form of undefined behavior for concurrent

programs in many languages like C++ or Rust), as well as common programming pitfalls like

Authors’ addresses: Ralf Jung, MPI-SWS∗ , jung@mpi-sws.org; Jacques-Henri Jourdan, MPI-SWS∗ , jjourdan@mpi-sws.org;

Robbert Krebbers, Delft University of Technology, mail@robbertkrebbers.nl; Derek Dreyer, MPI-SWS∗ , dreyer@mpi-sws.org.

∗ Saarland Informatics Campus.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/1-ART66

https://doi.org/10.1145/3158154

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 66. Publication date: January 2018.

Semi-Automated Reasoning About

Non-Determinism in C Expressions
Dan Frumin1, Léon Gondelman1, and Robbert Krebbers2

1
Radboud University

{dfrumin,lgg}@cs.ru.nl
2

Delft University of Technology
mail@robbertkrebbers.nlAbstract. Research into C verification often ignores that the C standard

leaves the evaluation order of expressions unspecified, and assigns unde-

fined behavior to write-write or read-write conflicts in subexpressions—

so called “sequence point violations”. These aspects should be accounted

for in verification because C compilers exploit them.

We present a verification condition generator (vcgen) that enables one

to semi-automatically prove the absence of undefined behavior in a given

C program for any evaluation order. The key novelty of our approach is

a symbolic execution algorithm that computes a frame at the same time

as a postcondition. The frame is used to automatically determine how

resources should be distributed among subexpressions.

We prove correctness of our vcgen with respect to a new monadic defi-

nitional semantics of a subset of C. This semantics is modular and gives

a concise account of non-determinism in C.

We have implemented our vcgen as a tactic in the Coq interactive the-

orem prover, and have proved correctness of it using a separation logic

for the new monadic definitional semantics of a subset of C.

1 Introduction
The ISO C standard [22]—the official specification of the C language—leaves

many parts of the language semantics either unspecified (e.g., the order of evalu-

ation of expressions), or undefined (e.g., dereferencing a NULL pointer or integer

overflow). In case of undefined behavior a program may do literally anything,

e.g., it may crash, or it may produce an arbitrary result and side-effects. There-

fore, to establish the correctness of a C program, one needs to ensure that the

program has no undefined behavior for all possible choices of non-determinism

due to unspecified behavior.
In this paper we focus on the undefined and unspecified behaviors related to

C’s expression semantics, which have been ignored by most existing verification

tools, but are crucial for establishing the correctness of realistic C programs. The

C standard does not require subexpressions to be evaluated in a specific order

(e.g., from left to right), but rather allows them to be evaluated in any order.

Moreover, an expression has undefined behavior when there is a conflicting write-

write or read-write access to the same location between two sequence points [22,

Time Credits and Time Receipts in Iris

Glen Mével
1 , Jacques

-Henri Jo
urdan

2 , and François
Pottier

1

1 Inria

2 CNRS, L
RI, Univ

. Paris S
ud, Univ

ersité Paris Sa
clay

Abstract.
We present

a machine-ch
ecked extensio

n of the pr
ogram logic

Iris with time credits and time receipts,
two dual means of reason

ing

about tim
e. Whereas ti

me credits
are used

to establ
ish an upper bo

und on

a progra
m’s execut

ion time, time receipt
s can be used to establ

ish a lower

bound. M
ore strikingl

y, time receipts
can be used to prove that cert

ain

undesira
ble event

s—such as intege
r overflow

s—cannot o
ccur unt

il a very

long time has elap
sed. We present s

everal m
achine-ch

ecked applicati
ons

of time credits and time receipts,
including

an applicati
on where both

concepts
are exploited

.

“Alice: H
ow long is forever

? White Rab
bit: Som

etimes, just o
ne secon

d.”

— Lewis Ca
rroll, Ali

ce in Wonderlan
d

1 Introduction

A program
logic, suc

h as Hoare
logic or Separ

ation Logic, is
a set of de

duction

rules tha
t can be used to reason about th

e behavior
of a program

. To this day,

considera
ble effort ha

s been invested
in developin

g ever-more-powe
rful prog

ram

logics that control t
he extension

al behavior
of program

s, that is, logics
that

guarante
e that a

program
safely computes a valid final resu

lt. A lesser eff
ort has

been devoted
to logics th

at allow
reasoning

not just
about sa

fety and functiona
l

correctne
ss, but a

lso about in
tensiona

l aspects
of a program

’s behavi
or, such

as

its time consumption and space usage.

In this paper, w
e are intereste

d in narrowin
g the gap between

these lines

of work.
We present a formal study

of two mechanism
s by which a standard

program
logic can

be exten
ded with means of re

asoning a
bout tim

e. As a st
arting

point, we
take Iris [13,1

1,14,12],
a powerful

evolution
of Concu

rrent Sep
aration

Logic [3]. We extend Iris with two elementary time-related
concepts

, namely

time credits [1,9,4] an
d time receipts.

Time credits a
nd time receipts

are independ
ent conc

epts: it m
akes sens

e to

extend a program
logic with either of them

in isolation
or with both of them

simultaneou
sly. They

are dual con
cepts: ev

ery computation
step consumes one

time credit and produces
one time receipt. T

hey are purely static: th
ey do not

exist at r
untime. We view them as Iris as

sertions.
Thus, th

ey can appear in
the

correctne
ss statements that we formulate about program

s and in the proofs of

these statements.

105

Mechanized Relational Verification of Concurrent Programs

with ContinuationsAMIN TIMANY, imec-Distrinet, KU Leuven, Belgium

LARS BIRKEDAL, Aarhus University, Denmark
Concurrent higher-order imperative programming languages with continuations are very flexible and allow for

the implementation of sophisticated programming patterns. For instance, it is well known that continuations

can be used to implement cooperative concurrency. Continuations can also simplify web server implementa-

tions. This, in particular, helps simplify keeping track of the state of server’s clients. However, such advanced

programming languages are very challenging to reason about. One of the main challenges in reasoning about

programs in the presence of continuations is due to the fact that the non-local flow of control breaks the bind

rule, one of the important modular reasoning principles of Hoare logic.

In this paper we present the first completely formalized tool for interactive mechanized relational verification

of programs written in a concurrent higher-order imperative programming language with continuations

(call/cc and throw). We develop novel logical relations which can be used to give mechanized proofs of

relational properties. In particular, we prove correctness of an implementation of cooperative concurrency with

continuations. In addition, we show that that a rudimentary web server implemented using the continuation-

based pattern is contextually equivalent to one implemented without the continuation-based pattern. We

introduce context-local reasoning principles for our calculus which allows us to regain modular reasoning

principles for the fragment of the language without non-local control flow. These novel reasoning principles

can be used in tandem with our (non-context-local) Hoare logic for reasoning about programs that do feature

non-local control flow. Indeed, we use the combination of context-local and non-context-local reasoning to

simplify reasoning about the examples.
CCS Concepts: • Theory of computation → Logic and verification; Hoare logic; Separation logic;

Program specifications; Program verification; Invariants; Pre- and post-conditions; • Software and its

engineering → Formal software verification; Semantics.

Additional Key Words and Phrases: Logical relations, Continuations, Concurrency

ACM Reference Format:Amin Timany and Lars Birkedal. 2019. Mechanized Relational Verification of Concurrent Programs with

Continuations. Proc. ACM Program. Lang. 3, ICFP, Article 105 (August 2019), 28 pages. https://doi.org/10.1145/

3341709

1 INTRODUCTIONIn a programming language with continuations, a computation can be suspended into a continuation

object which can be resumed later. Continuations enable interesting programming patterns. For

instance, it is well-known that they can be used to implement cooperative concurrency [Haynes

et al. 1984]: switching between threads can be implemented by suspending the running thread,

storing the suspension and running another thread. Another notable application of continuations

Authors’ addresses: Amin Timany, Department of Computer Science, imec-Distrinet, KU Leuven, Leuven, Belgium, amin.

timany@cs.kuleuven.be; Lars Birkedal, Department of Computer Science, Aarhus University, Aarhus, Denmark, birkedal@

cs.au.dk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2019 Copyright held by the owner/author(s).

2475-1421/2019/8-ART105https://doi.org/10.1145/3341709

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

65

Iron: Managing Obligations in

Higher-Order Concurrent Separation Logic

ALEŠ BIZJAK, Aarhus University, Denmark

DANIEL GRATZER, Aarhus University, Denmark

ROBBERT KREBBERS, Delft University of Technology, The Netherlands

LARS BIRKEDAL, Aarhus University, Denmark

Precise management of resources and the obligations they impose, such as the need to dispose of memory, close

locks, and release file handles, is hard—especially in the presence of concurrency, when some resources are

shared, and different threads operate on them concurrently. We present Iron, a novel higher-order concurrent

separation logic that allows for precise reasoning about resources that are transferable among dynamically

allocated threads. In particular, Iron can be used to show the correctness of challenging examples, where the

reclamation of memory is delegated to a forked-off thread. We show soundness of Iron by means of a model of

Iron, defined on top of the Iris base logic, and we use this model to prove that memory resources are accounted

for precisely and not leaked. We have formalized all of the developments in the Coq proof assistant.

CCS Concepts: • Theory of computation → Separation logic; Program verification; Programming logic;

Operational semantics;

Additional Key Words and Phrases: Separation logic, concurrency, resource management

ACM Reference Format:

Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: Managing Obligations in Higher-

Order Concurrent Separation Logic. Proc. ACM Program. Lang. 3, POPL, Article 65 (January 2019), 30 pages.

https://doi.org/10.1145/3290378

1 INTRODUCTION

To enable reasoning about resources in the presence of concurrency, a plethora of variants of con-

current separation logic (CSL) have been proposed, e.g., [da Rocha Pinto et al. 2014; Dinsdale-Young

et al. 2010; Feng 2009; Feng et al. 2007; Fu et al. 2010; Hobor et al. 2008; Jung et al. 2016, 2018, 2015;

Krebbers et al. 2017a; Mansky et al. 2017; Nanevski et al. 2014; O’Hearn 2007; Svendsen and Birkedal

2014; Turon et al. 2013; Vafeiadis and Parkinson 2007]. Despite their increased expressiveness and

increased sophistication to provide modular specifications of program modules, none of these

variants of separation logic can both:

(1) reason locally about unstructured fork-style concurrency, and,

(2) prove that resources are necessarily used, e.g., that a program module is obligated to free all

the memory it has allocated, or that it is obligated to released all the locks it has acquired.

Authors’ addresses: Aleš Bizjak, Aarhus University, abizjak@cs.au.dk; Daniel Gratzer, Aarhus University, gratzer@cs.au.dk;

Robbert Krebbers, Delft University of Technology, mail@robbertkrebbers.nl; Lars Birkedal, Aarhus University,

birkedal@cs.au.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART65

https://doi.org/10.1145/3290378

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 65. Publication date: January 2019.

64

A Separation Logic for Concurrent Randomized Programs

JOSEPH TASSAROTTI, Carnegie Mellon University, USA

ROBERT HARPER, Carnegie Mellon University, USA

We present Polaris, a concurrent separation logic with support for probabilistic reasoning. As part of our logic,

we extend the idea of coupling, which underlies recent work on probabilistic relational logics, to the setting of

programs with both probabilistic and non-deterministic choice. To demonstrate Polaris, we verify a variant of

a randomized concurrent counter algorithm and a two-level concurrent skip list. All of our results have been

mechanized in Coq.CCS Concepts: • Theory of computation → Separation logic; Program verification;

Additional Key Words and Phrases: separation logic, concurrency, probability

ACM Reference Format:Joseph Tassarotti and Robert Harper. 2019. A Separation Logic for Concurrent Randomized Programs. Proc.

ACM Program. Lang. 3, POPL, Article 64 (January 2019), 31 pages. https://doi.org/10.1145/3290377

1 INTRODUCTIONMany concurrent algorithms use randomization to reduce contention and coordination between

threads. Roughly speaking, these algorithms are designed so that if each thread makes a local

random choice, then on average the aggregate behavior of the whole system will have some good

property.
For example, probabilistic skip lists [Pugh 1990] are known to work well in the concurrent

setting [Fraser 2004; Herlihy et al. 2006], because threads can independently insert nodes into the

skip list without much synchronization. In contrast, traditional balanced tree structures are difficult

to implement in a scalable way because re-balancing operations may require locking access to large

parts of the tree.However, concurrent randomized algorithms are difficult to write and reason about. The use of

just concurrency or randomness alone makes it hard to establish the correctness of an algorithm.

For that reason, a number of program logics for reasoning about concurrent [Dinsdale-Young et al.

2013, 2010; Fu et al. 2010; Jones 1983; Jung et al. 2015; Nanevski et al. 2014; O’Hearn 2007; Vafeiadis

and Parkinson 2007] or randomized [Barthe et al. 2016, 2012; Kaminski et al. 2016; Morgan et al.

1996; Ramshaw 1979] programs have been developed.

But, to our knowledge, the only prior program logic designed for reasoning about programs that

are both concurrent and randomized is the recent probabilistic rely-guarantee calculus developed

by McIver et al. [2016], which extends Jones’s original rely-guarantee logic [Jones 1983] with

probabilistic constructs. However, this logic lacks many of the features of modern concurrency

logics. For example, starting with the work of Vafeiadis and Parkinson [2007] and Feng et al.

[2007], many recent concurrency logics combine rely-guarantee style reasoning with some form of

Authors’ addresses: Joseph Tassarotti, Computer Science Department, Carnegie Mellon University, USA, jtassaro@andrew.

cmu.edu; Robert Harper, Computer Science Department, Carnegie Mellon University, USA, rwh@cs.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART64https://doi.org/10.1145/3290377

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 64. Publication date: January 2019.

Verifying concurrent, crash-safe systems with Perennial

Tej Chajed
MIT CSAIL

Joseph Tassarotti

Boston College

M. Frans Kaashoek

MIT CSAIL

Nickolai Zeldovich

MIT CSAIL

Abstract

This paper introduces Perennial, a framework for verify-

ing concurrent, crash-safe systems. Perennial extends the

Iris concurrency framework with three techniques to enable

crash-safety reasoning: recovery leases, recovery helping,

and versioned memory. To ease development and deploy-

ment of applications, Perennial provides Goose, a subset of

Go and a translator from that subset to a model in Perennial

with support for reasoning about Go threads, data structures,

and file-system primitives. We implemented and verified a

crash-safe, concurrent mail server using Perennial and Goose

that achieves speedup on multiple cores. Both Perennial and

Iris use the Coq proof assistant, and the mail server and the

framework’s proofs are machine checked.

CCS Con
cepts • Software and its engineering → Soft-

ware verification; Concurrency control; Software fault toler-

ance.

Keyword
s Concurrency, Separation Logic, Crash Safety

1 Introduction

Making concurrent systems crash-safe is challenging be-

cause programmers must consider many interleavings of

threads in addition to the possibility of a crash at any time.

Testing interleavings and crash points is difficult, but formal

verification can prove that the system always follows its

specification, regardless of how threads interleave and even

if the system crashes.

Several existing verified storage systems address many

aspects of crash safety [5, 7, 10, 34], but they support only

sequential execution. There has also been great progress

in verifying concurrent systems [4, 13, 14, 20, 23, 41], but

none support crash safety reasoning. This paper develops

techniques for reasoning about crash safety in the presence

of concurrency and applies them to a verification system

called Iris [24].

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6873-5/19/10.

https://doi.org/10.1145/3341301.3359632

Multithreaded Application

Replicated disk library

Disk 1
Disk 2

rd_wri
te/rd_read

rd_wri
te/rd_read

write/read

write/read

Figure 1. A concurrent, replicated disk library that tolerates

a single disk failure using two physical disks. The library

provides linearizable reads and writes, and transparently

recovers from crashes.

To understand why reasoning about the combination of

crash safety and concurrency is challenging, consider the

following example: a concurrent disk replication library (Fig-

ure 1) that sends writes to two physical disks and handles

read failures on the first disk by falling back to the second.

The informal specification for the library is simple: the two

disks should behave as a single disk. That is, reading a block

should return the last value written to that block, and con-

current reads/writes should be linearizable [19].

One way to implement this specification is with a lock per

block, which is held during writes and reads. This guarantees

that concurrent writes and reads of the same disk block are

linearizable. Intuitively, such an implementation is correct

because a write is durably stored on both disks before the

lock is released.

The lock provides linearizability, but a crash that happens

in the middle of a write leaves the disks out of sync. There-

fore, the implementation must run a recovery procedure on

reboot. Because we want writes to be durable when they

finish, recovery must not revert or corrupt completed writes.

For example, it would be wrong for recovery to make the

disks in sync by zeroing them both. A correct recovery pro-

cedure copies values from the first disk to the second. This

is safe because it logically completes write operations that

crashed during execution and only overwrites old data.

To prove that this justification is correct and that the de-

veloper has considered all interleavings and crash points cor-

rectly, we need to capture this reasoning using precise rules

that lend themselves to concise, machine-checked proofs.

Formalizing this argument is challenging and beyond the

scope of previous concurrency verification tools.

1

33

Spy Game: Verifying a Local Generic Solver in Iris∗

PAULO EMÍLIO DE VILHENA, Inria, France

FRANÇOIS POTTIER, Inria, France
JACQUES-HENRI JOURDAN, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique,

France
We verify the partial correctness of a “local generic solver”, that is, an on-demand, incremental, memoizing

least fixed point computation algorithm. The verification is carried out in Iris, a modern breed of concurrent

separation logic. The specification is simple: the solver computes the optimal least fixed point of a system of

monotone equations. Although the solver relies on mutable internal state for memoization and for “spying”, a

form of dynamic dependency discovery, it is apparently pure: no side effects are mentioned in its specification.

As auxiliary contributions, we provide several illustrations of the use of prophecy variables, a novel feature of

Iris; we establish a restricted form of the infinitary conjunction rule; and we provide a specification and proof

of Longley’s modulus function, an archetypical example of spying.

CCS Concepts: • Theory of computation → Separation logic; Program verification.

Additional Key Words and Phrases: separation logic, prophecy variables, least fixed point, program verification

ACM Reference Format:Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan. 2020. Spy Game: Verifying a Local

Generic Solver in Iris. Proc. ACM Program. Lang. 4, POPL, Article 33 (January 2020), 28 pages. https://doi.org/

10.1145/3371101
1 INTRODUCTION1.1 The ProblemThe problem of computing the least solution of a system of monotone equations often arises in the

analysis of objects that have cyclic or recursive structure, such as grammars, control flow graphs,

transition systems, and so on. For instance, in the analysis of a context-free grammar, determining

which symbols generate an empty language, determining which symbols can derive the empty

word, and computing the “first” and “follow” sets of each symbol, are four problems that can be

formulated in this manner. Many other examples can be found in the area of static program analysis,

where it has long been understood that most forms of static program analysis are in fact least fixed

point computations. Early references include Kildall [1973], Kam and Ullman [1976], and Cousot

and Cousot [1977].The problem is traditionally stated as follows: compute the least fixed point of a monotone

function E of type (V → P) → (V → P), where V is an arbitrary type of “variables” and P

is a type of “properties” equipped with a partial order ≤ and a least element ⊥. One can think

∗This research was partly supported by the French National Research Agency (ANR) under the grant ANR-15-CE25-0008.

Authors’ addresses: Paulo Emílio de Vilhena, Inria, France, paulo-emilio.de-vilhena@inria.fr; François Pottier, Inria, France,

francois.pottier@inria.fr; Jacques-Henri Jourdan, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique,

91405, Orsay, France, jacques-henri.jourdan@lri.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART33https://doi.org/10.1145/3371101

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 33. Publication date: January 2020.

Aneris: A Mechanised Logic for Modular

Reasoning about Distributed Systems

Morten Krogh-Jes
persen, A

min Timany
? , Marit Edn

a Ohlenbusc
h,

Simon Oddershed
e Gregersen

, and Lars Birk
edal

Aarhus U
niversity

, Aarhus
, Denmark

Abstrac
t. Building

network
-connect

ed program
s and distribut

ed sys-

tems is a powerful
way to provide scalabilit

y and availabil
ity in a digital,

always-c
onnected

era. How
ever, wit

h great po
wer com

es great
complexity.

Reasonin
g about di

stributed
systems is well-

known to be difficult.

In this pap
er we present Aneris, a novel fra

mework based on separatio
n

logic supporti
ng modular,

node-loc
al reason

ing about concurre
nt and

distribut
ed systems. The logic is higher

-order, c
oncurren

t, with higher-

order sto
re and network

sockets,
and is fully mechanize

d in the Coq
proof

assistant
. We use our fram

ework to verify an implementation
of a load

balancer
that use

s multi-thre
ading to distribut

e load amongst multiple

servers a
nd an implementation

of the two-phase-
commit protocol

with

a replicate
d logging

service as a client. T
he two examples certify that

Aneris is we
ll-suited

for both
horizont

al and vertical
modular r

easoning
.

Keyword
s: Distribute

d systems · Separat
ion logic · Hig

her-orde
r logic ·

Concurr
ency · For

mal verific
ation

1 Introduction

Reasonin
g about di

stributed
systems is noto

riously difficult due
to their she

er

complexity. T
his is larg

ely the reaso
n why previous

work has tradi
tionally focused

on verificati
on of protoc

ols of core network
components.

In particula
r, in the

context o
f model chec

king, wh
ere safety and liveness

assertion
s [29] are

consid-

ered, too
ls such as SPIN [9], TLA

+ [23], and
Mace [17] have

been develope
d.

More recently,
significan

t contrib
utions h

ave been made in the field of formal

proofs of
implementation

s of challe
nging protocol

s, such as two-p
hase-com

mit,

lease-bas
ed key-valu

e stores, P
axos, an

d Raft [7, 25, 3
0, 35, 40

]. All of
these

developm
ents defin

e domain specific language
s (DSLs) spe

cialized for distri
buted

systems verifica
tion. Pro

tocols an
d modules p

roven correct c
an be compiled to

an executab
le, often

relying on some trusted code-bas
e.

Formal reason
ing about di

stributed
systems has oft

en been carried out by

giving an abstract
model in the form of a state transition

system or flow-c
hart in

the tradition
of Floyd

[5], Lam
port [21,

22]. A state is normally taken to be a

? This rese
arch was carr

ied out whil
e Amin Timany was at K

U Leuven,
working

as a

postdoct
oral fello

w of the Flemish research
fund (FWO).

96

Cosmo: A Concurrent Separation Logic for Multicore OCaml

GLEN MÉVEL, Inria, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique, France

JACQUES-HENRI JOURDAN, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique

FRANÇOIS POTTIER, Inria, France
Multicore OCaml extends OCaml with support for shared-memory concurrency. It is equipped with a weak

memory model, for which an operational semantics has been published. This begs the question: what reasoning

rules can one rely upon while writing or verifying Multicore OCaml code? To answer it, we instantiate Iris, a

modern descendant of Concurrent Separation Logic, for Multicore OCaml. This yields a low-level program

logic whose reasoning rules expose the details of the memory model. On top of it, we build a higher-level

logic, Cosmo, which trades off some expressive power in return for a simple set of reasoning rules that allow

accessing nonatomic locations in a data-race-free manner, exploiting the sequentially-consistent behavior

of atomic locations, and exploiting the release/acquire behavior of atomic locations. Cosmo allows both

low-level reasoning, where the details of the Multicore OCaml memory model are apparent, and high-level

reasoning, which is independent of this memory model. We illustrate this claim via a number of case studies:

we verify several implementations of locks with respect to a classic, memory-model-independent specification.

Thus, a coarse-grained application that uses locks as the sole means of synchronization can be verified in the

Concurrent-Separation-Logic fragment of Cosmo, without any knowledge of the weak memory model.

CCS Concepts: • Theory of computation→ Separation logic; Program verification.

Additional Key Words and Phrases: separation logic, program verification, concurrency, weak memory

ACM Reference Format:Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2020. Cosmo: A Concurrent Separation Logic for

Multicore OCaml. Proc. ACM Program. Lang. 4, ICFP, Article 96 (August 2020), 29 pages. https://doi.org/10.

1145/3408978

We are all in the gutter, but some of us are looking at the stars. — Oscar Wilde

1 INTRODUCTIONMulticore OCaml [Dolan et al. 2018a] extends the OCaml programming language [Leroy et al. 2019]

with support for shared-memory concurrency. It is an ongoing experimental project: at the time of

writing, although preparations are being made for its integration into mainstream OCaml, this has

not yet been done. Nevertheless, Multicore OCaml has a well-defined semantics: in particular, its

memory model, which specifies how threads interact through shared memory locations, has been

published by Dolan et al. [2018b]. Therefore, one may already ask: what reasoning rules can or

should a Multicore OCaml programmer rely upon in order to verify their code?

Multicore OCaml’s memory model is weak: it does not enforce sequential consistency [Lamport

1979]. That is, the execution of a program is not necessarily an interleaving of the actions performed

by its threads while interacting with a central shared memory. Many mainstream programming

Authors’ addresses: Glen Mével, Inria, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique, 91405,

Orsay, France, glen.mevel@inria.fr; Jacques-Henri Jourdan, Université Paris-Saclay, CNRS, Laboratoire de recherche en

informatique, 91405, Orsay, jacques-henri.jourdan@lri.fr; François Pottier, Inria, France, francois.pottier@inria.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART96https://doi.org/10.1145/3408978

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 96. Publication date: August 2020.

114

Scala Step-by-Step

Soundness for DOT with Step-Indexed Logical Relations in Iris

PAOLO G. GIARRUSSO, Delft University of Technology, The Netherlands

LÉO STEFANESCO, IRIF, Université de Paris & CNRS, France

AMIN TIMANY, Aarhus University, Denmark

LARS BIRKEDAL, Aarhus University, Denmark

ROBBERT KREBBERS, Delft University of Technology, The Netherlands

The metatheory of Scala’s core type system — the Dependent Object Types (DOT) calculus — is hard to extend,

like the metatheory of other type systems combining subtyping and dependent types. Soundness of important

Scala features therefore remains an open problem in theory and in practice. To address some of these problems,

we use a semantics-first approach to develop a logical relations model for a new version of DOT, called guarded

DOT (gDOT). Our logical relations model makes use of an abstract form of step-indexing, as supported by the

Iris framework, to model various forms of recursion in gDOT. To demonstrate the expressiveness of gDOT,

we show that it handles Scala examples that could not be handled by previous versions of DOT, and prove

using our logical relations model that gDOT provides the desired data abstraction. The gDOT type system, its

semantic model, its soundness proofs, and all examples in the paper have been mechanized in Coq.

CCS Concepts: • Theory of computation→ Programming logic; Type theory; Logic and verification;

Program verification.

Additional Key Words and Phrases: DOT, Scala, type soundness, data abstraction, step-indexing, logical

relations, Iris, Coq

ACM Reference Format:

Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Robbert Krebbers. 2020. Scala Step-

by-Step: Soundness for DOT with Step-Indexed Logical Relations in Iris. Proc. ACM Program. Lang. 4, ICFP,

Article 114 (August 2020), 29 pages. https://doi.org/10.1145/3408996

1 INTRODUCTION

The Scala language has an expressive type system that supports, among other features, first-class

recursive modules, path dependent types, impredicative type members, and subtyping, achieving

strong information hiding. Alas, Scala has struggled for years with type soundness issues and ad-hoc

fixes. To address these issues more rigorously, the compiler of the new Scala 3 language (called

Dotty) has been designed hand in hand with a new foundational type system — the Dependent Object

Types (DOT) calculus. This development led to a number of increasingly expressive versions of DOT

and type soundness proofs thereof [Amin et al. 2016; Kabir and Lhoták 2018; Rapoport et al. 2017;

Rapoport and Lhoták 2016; Rompf and Amin 2016], culminating in the pDOT calculus [Rapoport

and Lhoták 2019], and has helped to fix various soundness bugs in Scala 3 [Rompf and Amin 2016].

Authors’ addresses: Paolo G. Giarrusso, Delft University of Technology, The Netherlands; Léo Stefanesco, IRIF, Université

de Paris & CNRS, France; Amin Timany, Aarhus University, Denmark; Lars Birkedal, Aarhus University, Denmark; Robbert

Krebbers, Delft University of Technology, The Netherlands.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART114

https://doi.org/10.1145/3408996

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 114. Publication date: August 2020.

Verifying Concurrent Search Structure Templates

Siddharth KrishnaMicrosoft ResearchCambridge, UKsiddharth@cs.nyu.edu Nisarg PatelNew York UniversityUSAnisarg@nyu.edu

Dennis ShashaNew York UniversityUSAshasha@cims.nyu.edu Thomas WiesNew York UniversityUSAwies@cs.nyu.edu

Abstract
Concurrent separation logics have had great success rea-

soning about concurrent data structures. This success stems

from their application of modularity on multiple levels, lead-

ing to proofs that are decomposed according to program

structure, program state, and individual threads. Despite

these advances, it remains difficult to achieve proof reuse

across different data structure implementations. For the large

class of search structures, we demonstrate how one can achieve

further proof modularity by decoupling the proof of thread

safety from the proof of structural integrity. We base our

work on the template algorithms of Shasha and Goodman

that dictate how threads interact but abstract from the con-

crete layout of nodes in memory. Building on the recently

proposed flow framework of compositional abstractions and

the separation logic Iris, we show how to prove correctness

of template algorithms, and how to instantiate them to obtain

multiple verified implementations.
We demonstrate our approach by mechanizing the proofs

of three concurrent search structure templates, based on

link, give-up, and lock-coupling synchronization, and deriv-

ing verified implementations based on B-trees, hash tables,

and linked lists. These case studies include algorithms used

in real-world file systems and databases, which have been

beyond the capability of prior automated or mechanized ver-

ification techniques. In addition, our approach reduces proof

complexity and is able to achieve significant proof reuse.

CCS Concepts: · Theory of computation → Logic and

verification; Separation logic; Shared memory algorithms.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’20, June 15ś20, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00

https://doi.org/10.1145/3385412.3386029

Keywords: template-based verification, concurrent data struc-

tures, flow framework, separation logicACM Reference Format:Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies.

2020. Verifying Concurrent Search Structure Templates. In Pro-

ceedings of the 41st ACM SIGPLAN International Conference on Pro-

gramming Language Design and Implementation (PLDI ’20), June

15ś20, 2020, London, UK. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3385412.3386029

1 IntroductionModularity is as important in simplifying formal proofs as it

has been for the design and maintenance of large systems.

There are three main types of modular proof techniques:

(i) Hoare logic [32] enables proofs to be compositional in

terms of program structure; (ii) separation logic [48, 54]

allows proofs of programs to be local in terms of the state

they modify; and (iii) thread modular techniques [30, 33, 50]

allow one to reason about each thread in isolation.

Concurrent separation logics [10, 11, 16, 18, 19, 21, 24, 27,

37, 46, 47, 58, 60] incorporate all of the above techniques

and have led to great progress in the verification of practical

concurrent data structures, including recent milestones such

as a formal proof of the B-link tree [15]. Proofs of such

real-world data structures, however, remain large, complex,

paper-based, and verifiable only by hand.
An important reason why existing proofs, such as that of

the B-link tree, are still so complicated is that they argue

simultaneously about thread safety (i.e., how threads syn-

chronize) and memory safety (i.e., how data is laid out in

the heap). We contend that safety proofs should instead be

decomposed so as to reason about these two aspects inde-

pendently. When verifying thread safety we should abstract

from the concrete heap structure used to represent the data

and when verifying memory safety we should abstract from

the concrete thread synchronization algorithm. Adding this

form of abstraction as a fourth modular proof technique to

our arsenal promises reusable proofs and simpler correctness

arguments, which in turn aids proof automation.181

6

Actris: Session-Type Based Reasoning in Separation Logic

JONAS KASTBERG HINRICHSEN, IT University of Copenhagen, Denmark

JESPER BENGTSON, IT University of Copenhagen, Denmark

ROBBERT KREBBERS, Delft University of Technology, The Netherlands

Message passing is a useful abstraction to implement concurrent programs. For real-world systems, however,

it is often combined with other programming and concurrency paradigms, such as higher-order functions,

mutable state, shared-memory concurrency, and locks. We present Actris: a logic for proving functional

correctness of programs that use a combination of the aforementioned features. Actris combines the power

of modern concurrent separation logics with a first-class protocol mechanism—based on session types—for

reasoning about message passing in the presence of other concurrency paradigms. We show that Actris

provides a suitable level of abstraction by proving functional correctness of a variety of examples, including a

distributed merge sort, a distributed load-balancing mapper, and a variant of the map-reduce model, using

relatively simple specifications. Soundness of Actris is proved using a model of its protocol mechanism in the

Iris framework. We mechanised the theory of Actris, together with tactics for symbolic execution of programs,

as well as all examples in the paper, in the Coq proof assistant.

CCS Concepts: • Theory of computation → Separation logic; Program verification; Programming logic.

Additional Key Words and Phrases: Message passing, actor model, concurrency, session types, Iris

ACM Reference Format:

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris: Session-Type Based Reasoning

in Separation Logic. Proc. ACM Program. Lang. 4, POPL, Article 6 (January 2020), 30 pages. https://doi.org/10.

1145/3371074

1 INTRODUCTION

Message-passing programs are ubiquitous in modern computer systems, emphasising the impor-

tance of their functional correctness. Programming languages, like Erlang, Elixir, and Go, have

built-in primitives that handle spawning of processes and intra-process communication, while other

mainstream languages, such as Java, Scala, F#, and C#, have introduced an Actor model [Hewitt

et al. 1973] to achieve similar functionality. In both cases the goal remains the same—help design

reliable systems, often with close to constant up-time, using lightweight processes that can be

spawned by the hundreds of thousands and that communicate via asynchronous message passing.

While message passing is a useful abstraction, it is by no means a silver bullet of concurrent

programming. In a qualitative study of larger Scala projects Tasharofi et al. [2013] write:

We studied 15 large, mature, and actively maintained actor programs written in Scala

and found that 80% of them mix the actor model with another concurrency model.

Authors’ addresses: Jonas Kastberg Hinrichsen, IT University of Copenhagen, Denmark, jkas@itu.dk; Jesper Bengtson, IT

University of Copenhagen, Denmark, jebe@itu.dk; Robbert Krebbers, Delft University of Technology, The Netherlands,

mail@robbertkrebbers.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART6

https://doi.org/10.1145/3371074

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 6. Publication date: January 2020.

45

The Future is Ours: Prophecy Variables in Separation Logic

RALF JUNG, MPI-SWS, Germany
RODOLPHE LEPIGRE, MPI-SWS, Germany

GAURAV PARTHASARATHY, ETH Zurich, Switzerland and MPI-SWS, Germany

MARIANNA RAPOPORT, University of Waterloo, Canada and MPI-SWS, Germany

AMIN TIMANY, imec-DistriNet, KU Leuven, Belgium

DEREK DREYER, MPI-SWS, Germany
BART JACOBS, imec-DistriNet, KU Leuven, Belgium

Early in the development of Hoare logic, Owicki and Gries introduced auxiliary variables as a way of encoding

information about the history of a program’s execution that is useful for verifying its correctness. Over a

decade later, Abadi and Lamport observed that it is sometimes also necessary to know in advance what a

program will do in the future. To address this need, they proposed prophecy variables, originally as a proof

technique for refinement mappings between state machines. However, despite the fact that prophecy variables

are a clearly useful reasoning mechanism, there is (surprisingly) almost no work that attempts to integrate

them into Hoare logic. In this paper, we present the first account of prophecy variables in a Hoare-style

program logic that is flexible enough to verify logical atomicity (a relative of linearizability) for classic examples

from the concurrency literature like RDCSS and the Herlihy-Wing queue. Our account is formalized in the Iris

framework for separation logic in Coq. It makes essential use of ownership to encode the exclusive right to

resolve a prophecy, which in turn lets us enforce soundness of prophecies with a very simple set of proof rules.

CCS Concepts: • Theory of computation → Separation logic; Programming logic; Operational semantics.

Additional Key Words and Phrases: Prophecy variables, separation logic, logical atomicity, linearizability, Iris

ACM Reference Format:Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart

Jacobs. 2020. The Future is Ours: Prophecy Variables in Separation Logic. Proc. ACM Program. Lang. 4, POPL,

Article 45 (January 2020), 32 pages. https://doi.org/10.1145/3371113

1 INTRODUCTIONWhen proving correctness of a program P , it is often easier and more natural to reason forwardÐthat

is, to start at the beginning of P ’s execution and reason about how it behaves as it executes. But

sometimes strictly forward reasoning is not good enough: when reasoning about a program step s0 ,

it may be necessary to łpeek into the futurež and know ahead of time what will happen at some

future program step s1 .Authors’ addresses: Ralf Jung, MPI-SWS, Saarland Informatics Campus, Germany, jung@mpi-sws.org; Rodolphe Lepigre,

MPI-SWS, Saarland Informatics Campus, Germany, lepigre@mpi-sws.org; Gaurav Parthasarathy, Department of Computer

Science, ETH Zurich, Switzerland and MPI-SWS, Germany, gaurav.parthasarathy@inf.ethz.ch; Marianna Rapoport, Univer-

sity of Waterloo, Canada and MPI-SWS, Germany, mrapoport@uwaterloo.ca; Amin Timany, imec-DistriNet, KU Leuven, Bel-

gium, amin.timany@cs.kuleuven.be; Derek Dreyer, MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org;

Bart Jacobs, imec-DistriNet, KU Leuven, Belgium, bart.jacobs@cs.kuleuven.be.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART45https://doi.org/10.1145/3371113

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

34

RustBelt Meets Relaxed Memory

HOANG-HAI DANG, MPI-SWS, Germany

JACQUES-HENRI JOURDAN, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique,

France

JAN-OLIVER KAISER, MPI-SWS, Germany

DEREK DREYER, MPI-SWS, Germany

The Rust programming language supports safe systems programming by means of a strong ownership-tracking

type system. In their prior work on RustBelt, Jung et al. began the task of setting Rust’s safety claims on a

more rigorous formal foundation. Specifically, they used Iris, a Coq-based separation logic framework, to

build a machine-checked proof of semantic soundness for a λ-calculus model of Rust, as well as for a number

of widely-used Rust libraries that internally employ unsafe language features. However, they also made the

significant simplifying assumption that the language is sequentially consistent. In this paper, we adapt RustBelt

to account for the relaxed-memory operations that concurrent Rust libraries actually use, in the process

uncovering a data race in the Arc library. We focus on the most interesting technical problem: how to reason

about resource reclamation under relaxed memory, using a logical construction we call synchronized ghost state.

CCS Concepts: • Theory of computation → Separation logic; Operational semantics; Programming logic.

Additional Key Words and Phrases: Rust, semantic soundness, relaxed memory models, Iris

ACM Reference Format:

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020. RustBelt Meets Relaxed

Memory. Proc. ACM Program. Lang. 4, POPL, Article 34 (January 2020), 29 pages. https://doi.org/10.1145/3371102

1 INTRODUCTION

Rust [Klabnik and Nichols 2018] is a young and evolving programming languageÐsponsored by

Mozilla and developed actively over the past decade by a diverse community of contributorsÐthat

aims to bring safety to the world of systems programming. Specifically, Rust provides low-level

control over data layout and resource management à la modern C++, while at the same time offering

strong high-level guarantees (such as type and memory safety) that are traditionally associated with

safe languages like Java. In fact, Rust takes a step further, statically preventing more insidious forms

of anomalous behavior, such as data races and iterator invalidation, that safe languages typically fail

to rule out. Rust strikes its delicate balance between safety and control using a substructural type

system, in which types not only classify data but also represent ownership of resources, such as the

right to read, write, or reclaim a piece of memory. By tracking ownership in the types, Rust is able

to prohibit dangerous combinations of mutation and aliasing, a well-known source of programming

pitfalls and security vulnerabilities in C/C++ and Java.

Authors’ addresses: Hoang-Hai Dang, MPI-SWS, Saarland Informatics Campus, Germany, haidang@mpi-sws.org; Jacques-

Henri Jourdan, Université Paris-Saclay, CNRS, Laboratoire de recherche en informatique, 91405, Orsay, France, jacques-

henri.jourdan@lri.fr; Jan-Oliver Kaiser, MPI-SWS, Saarland Informatics Campus, Germany, janno@mpi-sws.org; Derek

Dreyer, MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART34

https://doi.org/10.1145/3371102

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 34. Publication date: January 2020.
This work

is licensed
under a C

reative Co
mmons Attrib

ution 4.0 Intern
ational Li

cense.

32

The High-Level Benefits of Low-Level Sandboxing

MICHAEL SAMMLER, MPI-SWS and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

DEEPAK GARG, MPI-SWS, Germany
DEREK DREYER, MPI-SWS, Germany
TADEUSZ LITAK, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Sandboxing is a common technique that allows low-level, untrusted components to safely interact with trusted

code. However, previous work has only investigated the low-level memory isolation guarantees of sandboxing,

leaving open the question of the end-to-end guarantees that sandboxing affords programmers. In this paper,

we fill this gap by showing that sandboxing enables reasoning about the known concept of robust safety, i.e.,

safety of the trusted code even in the presence of arbitrary untrusted code. To do this, we first present an

idealized operational semantics for a language that combines trusted code with untrusted code. Sandboxing is

built into our semantics. Then, we prove that safety properties of the trusted code (as enforced through a rich

type system) are upheld in the presence of arbitrary untrusted code, so long as all interactions with untrusted

code occur at the łanyž type (a type inhabited by all values). Finally, to alleviate the burden of having to

interact with untrusted code at only the łanyž type, we formalize and prove safe several wrappers, which

automatically convert values between the łanyž type and much richer types. All our results are mechanized in

the Coq proof assistant.CCS Concepts: • Security and privacy → Logic and verification; • Theory of computation → Program-

ming logic.
Additional Key Words and Phrases: Sandboxing, robust safety, Iris, type systems, logical relations, language-

based security
ACM Reference Format:Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. 2020. The High-Level Benefits of Low-Level

Sandboxing. Proc. ACM Program. Lang. 4, POPL, Article 32 (January 2020), 32 pages. https://doi.org/10.1145/

3371100

1 INTRODUCTIONThe Internet makes it easy to download useful software components from untrusted authors.

While it is convenient to integrate such untrusted components into a trusted (i.e., otherwise safe)

application, doing so also incurs security risks. The untrusted code could violate the integrity of

the trusted application’s private data structures, steal secrets, or take over the system and install

malicious software. In all these cases, the untrusted code violates expected safety properties of the

trusted application. Thus, it is important to ensure that an application maintains its expected safety

properties even when linked and co-executed with arbitrary untrusted code. This is often called

Authors’ addresses: Michael Sammler, MPI-SWS, Saarland Informatics Campus, Germany, msammler@mpi-sws.org,

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deepak Garg, MPI-SWS, Saarland Informatics Campus, Ger-

many, dg@mpi-sws.org; Derek Dreyer, MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org; Tadeusz

Litak, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, tadeusz.litak@fau.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART32https://doi.org/10.1145/3371100

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 32. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Safe Systems Programming in Rust:

The Promise and the Challenge

Ralf Jung

MPI-SWS,

Germany

Jacques-Henri Jourdan

Université Paris-Saclay, CNRS, LRI,

France

Robbert Krebbers

TU Delft,

The Netherlands

Derek Dreyer

MPI-SWS,

Germany

Key Insights

• Rust is the first industry-supported programming language

to overcome the longstanding tradeoff between the safety

guarantees of higher-level languages (like Java) and the

control over resource management provided by lower-level

“systems programming” languages (like C and C++).

• It tackles this challenge using a strong type system based

on the ideas of ownership and borrowing, which statically

prohibits the mutation of shared state. This approach en-

ables many common systems programming pitfalls to be

detected at compile time.

• There are a number of data types whose implementations

fundamentally depend on shared mutable state and thus

cannot be typechecked according to Rust’s strict ownership

discipline. To support such data types, Rust embraces the

judicious use of unsafe code encapsulated within safe APIs.

• The proof technique of semantic type soundness, together

with advances in separation logic and machine-checked

proof, has enabled us to begin building rigorous formal

foundations for Rust as part of the RustBelt project.

There is a longstanding tension in programming language

design between two seemingly irreconcilable desiderata.

• Safety. We want strong type systems that rule out large

classes of bugs statically. We want automatic memory

management. We want data encapsulation, so that we can

enforce invariants on the private representations of objects

and be sure that they will not be broken by untrusted code.

• Control. At least for “systems programming” applications

like web browsers, operating systems, or game engines,

where performance or resource constraints are a primary

concern, we want to determine the byte-level representa-

tion of data. We want to optimize the time and space usage

of our programs using low-level programming techniques.

We want access to the “bare metal” when we need it.

Sadly, the conventional wisdom goes, we can’t have

everything we want. Languages like Java give us strong

safety, but it comes at the expense of control. As a result, for

many systems programming applications, the only realistic

option is to use a language like C or C++ that provides

fine-grained control over resource management. However,

this control comes at a steep cost. For example, Microsoft

recently reported that 70% of the security vulnerabilities they

fix are due to memory safety violations [33], precisely the

type of bugs that strong type systems were designed to rule

out. Likewise, Mozilla reports that the vast majority of critical

bugs they find in Firefox are memory-related [16]. If only

there were a way to somehow get the best of both worlds: a

safe systems programming language with control. . .

Enter Rust. Sponsored by Mozilla and developed actively

over the past decade by a large and diverse community of

contributors, Rust supports many common low-level program-

ming idioms and APIs derived from modern C++. However,

unlike C++, Rust enforces the safe usage of these APIs with

a strong static type system.

In particular, like Java, Rust protects programmers from

memory safety violations (e.g., “use-after-free” bugs). But

Rust goes further by defending programmers against other,

more insidious anomalies that no other mainstream language

can prevent. For example, consider data races: unsynchro-

nized accesses to shared memory (at least one of which is

a write). Even though data races effectively constitute unde-

fined (or weakly-defined) behavior for concurrent code, most

“safe” languages (such as Java and Go) permit them, and they

are a reliable source of concurrency bugs [35]. In contrast,

Rust’s type system rules out data races at compile time.

Rust has been steadily gaining in popularity, to the point

that it is now being used internally by many major indus-

trial software vendors (such as Dropbox, Facebook, Ama-

zon, and Cloudflare) and has topped StackOverflow’s list

of “most loved” programming languages for the past four

years. Microsoft’s Security Response Center Team recently

announced that it is actively exploring an investment in the

use of Rust at Microsoft to stem the tide of security vulnera-

bilities in system software [25, 8].

The design of Rust draws deeply from the wellspring of

academic research on safe systems programming. In particu-

lar, the most distinctive feature of Rust’s design—in relation

to other mainstream languages—is its adoption of an own-

ership type system (which in the academic literature is often

referred to as an affine or substructural type system [36]).

Ownership type systems help the programmer enforce safe

patterns of lower-level programming by placing restrictions

on which aliases (references) to an object may be used to

mutate it at any given point in the program’s execution.

1

2020/5/1

Compositional Non-Interference
for Fine-Grained Concurrent Programs
Dan FruminRadboud University Robbert KrebbersDelft University of Technology Lars BirkedalAarhus University

Abstract—Non-interference is a program property that ensures

the absence of information leaks. In the context of programming

languages, there exist two common approaches for establishing

non-interference: type systems and program logics. Type systems

provide strong automation (by means of type checking), but they

are inherently restrictive in the kind of programs they support.

Program logics support challenging programs, but they typically

require significant human assistance, and cannot handle modules

or higher-order programs.
To connect these two approaches, we present SeLoC—a sep-

aration logic for non-interference, on top of which we build a

type system using the technique of logical relations. By building

a type system on top of separation logic, we can compositionally

verify programs that consist of typed and untyped parts. The

former parts are verified through type checking, while the latter

parts are verified through manual proof.

The core technical contribution of SeLoC is a relational form

of weakest preconditions that can track information flow using

separation logic resources. SeLoC is fully machine-checked, and

built on top of the Iris framework for concurrent separation logic

in Coq. The integration with Iris provides seamless support for

fine-grained concurrency, which was beyond the reach of prior

type systems and program logics for non-interference.

Index Terms—non-interference, logical relations, separation

logic, fine-grained concurrency, Coq, Iris
I. INTRODUCTION

Non-interference is a form of information flow control (IFC)

used to express that confidential information cannot leak

to attackers. To establish non-interference of modern pro-

grams, it is crucial to develop verification techniques that

support challenging programming paradigms and programming

constructs such as concurrency. Furthermore, to scale up

these techniques to larger programs, it is important that they

are compositional. That is, they should make it possible to

establish non-interference of program modules in isolation,

without having to consider all possible interference from the

environment and other program modules.

Much effort has been put into developing these verification

techniques. In terms of expressivity, techniques have been

developed that support dynamically allocated references and

higher-order functions [1]–[3], and concurrency [4]–[10].

Despite recent advancements, the expressivity of available

techniques for non-interference still lags behind the expressivity

of techniques for functional correctness, which have seen major

breakthroughs since the seminal development of concurrent

separation logic [11], [12]. There are several reasons for this.

First, a lot of prior work on non-interference focused on

type systems and type system-like logics, e.g., [1], [4], [6], [9],

[10]. Such systems provide strong automation (by means of

type checking), but lack capabilities to reason about functional

correctness, and are thus inherently restrictive in the kind of

programs they can verify. For example, it may be the case that

the confidentiality of the contents of a reference depends on

runtime information instead of solely static information (this

is called value-dependent classification [7], [13]–[16]).

Second, proving non-interference is harder than proving

functional correctness. While functional correctness is a prop-

erty about each single run of a program, non-interference is

stated in terms of multiple runs of the same program. One

has to show that for different values of confidential inputs, the

attacker cannot observe a different behavior.

To overcome the aforementioned shortcomings, we take a

new approach that combines program logics and type systems:

we present a concurrent separation logic for non-interference

on top of which we build a type system for non-interference.

Program modules whose non-interference relies on functional

correctness (and thus cannot be type checked) can be assigned

a type through a manual proof in our separation logic. This

combination of separation logic and type checking makes

it possible compositionally to establish non-interference of

programs that consist of untyped and typed parts.

Although ideas from concurrent separation logic have been

employed in the context of non-interference before [9], [10], we

believe that in the context of non-interference the combination

of typing and separation logic is new. Moreover, our approach

provides a number of other advantages compared to prior work:

• Our separation logic supports fine-grained concurrency.

That is, it can verify programs that use low-level atomic

operations like compare-and-set to implement lock-free

concurrent data structures and high-level synchronization

mechanisms such as locks/mutexes. In prior work, such

mechanisms were taken to be language primitives.

• Our separation logic is higher-order, making it possible

to assign very general specifications to program modules.

• Our separation logic is relational, making it possible to

reason about multiple runs of a program with different

values for confidential inputs.
• Our separation logic provides a powerful invariant mech-

anism to describe protocols on the shared state, making

it possible to reason about sophisticated forms of sharing,

as in value-dependent classifications.

In order to build our logic we make use of the Iris framework

for concurrent separation logic [17]–[20], which provides basic1

RefinedC: Automating the Foundational Verification

of C Code with Refined Ownership Types

Michael Sammler

MPI-SWS

Germany

msammler@mpi-sws.org

Rodolphe Lepigre

MPI-SWS

Germany

lepigre@mpi-sws.org

Robbert Krebbers

Radboud University Nijmegen

The Netherlands

mail@robbertkrebbers.nl

Kayvan Memarian

University of Cambridge

UK

kayvan.memarian@cl.cam.ac.uk

Derek Dreyer
MPI-SWS

Germany

dreyer@mpi-sws.org

Deepak Garg
MPI-SWS

Germany

dg@mpi-sws.org

Abstract

Given the central role that C continues to play in systems

software, and the difficulty of writing safe and correct C

code, it remains a grand challenge to develop effective for-

mal methods for verifying C programs. In this paper, we

propose a new approach to this problem: a type system we

call RefinedC, which combines ownership types (for mod-

ular reasoning about shared state and concurrency) with

refinement types (for encoding precise invariants on C data

types and Hoare-style specifications for C functions).

RefinedC is both automated (requiring minimal user in-

tervention) and foundational (producing a proof of program

correctness in Coq), while at the same time handling a range

of low-level programming idioms such as pointer arithmetic.

In particular, following the approach of RustBelt, the sound-

ness of the RefinedC type system is justified semantically by

interpretation into the Coq-based Iris framework for higher-

order concurrent separation logic. However, the typing rules

of RefinedC are also designed to be encodable in a new “sep-

aration logic programming” language we call Lithium. By

restricting to a carefully chosen (yet expressive) fragment

of separation logic, Lithium supports predictable, automatic,

goal-directed proof search without backtracking. We demon-

strate the effectiveness of RefinedC on a range of represen-

tative examples of C code.

CCS Con
cepts: • Theory of computation→ Separation

logic; Automated reasoning; Type theory.

Keyword
s: C programming language, separation logic, own-

ership types, refinement types, proof automation, Iris, Coq

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’21, June 20–25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.

https://doi.org/10.1145/3453483.3454036

ACM Reference Format:

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan

Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: Au-

tomating the Foundational Verification of C Code with Refined

Ownership Types. In Proceedings of the 42nd ACM SIGPLAN Inter-

national Conference on Programming Language Design and Imple-

mentation (PLDI ’21), June 20–25, 2021, Virtual, Canada. ACM, New

York, NY, USA, 17 pages. https://doi.org/10.1145/3453483.3454036

1 Introduction

Despite numerous advances in programming language tech-

nology over the past several decades, a great deal of safety-

and security-critical systems software is still programmed

in C. The C language remains widely used in large part be-

cause it provides fine-grained control over management of

resources, which is indispensable to many systems programs.

However, this control comes at the steep cost of regularly

introducing serious and sometimes catastrophic bugs into

code. It has thus long been one of the grand challenges of

programming languages research to develop scalable for-

mal methods that can help programmers build C code that

is functionally correct, and verifiably so [2, 13, 15, 17, 19–

21, 25, 27, 29, 31, 33, 40, 53, 63, 69, 75, 82, 86].

Existing tools for formal verification of C programs come

in two varieties: automated or foundational.

On the one hand, automated tools like VeriFast [40], VCC

[17], and MatchC [86] use a variety of techniques (including

both off-the-shelf SMT solvers and bespoke separation-logic

solvers) to verify correctness of C programs with minimal

user intervention. With these tools, the user still needs to

write specifications and provide some annotations (e.g., loop

invariants) to aid the proof search, but the verification is

otherwise automatic. However, automated tools have a siz-

able trusted computing base: one must trust that the often-

sophisticated logic underpinning them is sound—and imple-

mented correctly—since the tools do not provide any form

of independently checkable proof.

On the other hand, foundational tools like VST [2, 10], as

well as major verification efforts like CertiKOS [32–34] and

1

Transfinite Iris: Resolving an Existential Dilemma of

Step-Indexed Separation Logic
Simon SpiesMPI-SWS andSaarland UniversityGermanyspies@mpi-sws.org

Lennard GäherMPI-SWS andSaarland UniversityGermanygaeher@mpi-sws.org

Daniel GratzerAarhus UniversityDenmarkgratzer@cs.au.dk

Joseph TassarottiBoston CollegeUSAtassarot@bc.edu

Robbert KrebbersRadboud University NijmegenThe Netherlandsmail@robbertkrebbers.nl

Derek DreyerMPI-SWSGermanydreyer@mpi-sws.org

Lars BirkedalAarhus UniversityDenmarkbirkedal@cs.au.dk

Abstract
Step-indexed separation logic has proven to be a powerful

tool for modular reasoning about higher-order stateful pro-

grams. However, it has only been used to reason about safety

properties, never liveness properties. In this paper, we ob-

serve that the inability of step-indexed separation logic to

support liveness properties stems fundamentally from its

failure to validate the existential property, connecting the

meaning of existential quantification inside and outside the

logic. We show how to validate the existential propertyÐand

thus enable liveness reasoningÐby moving from finite step-

indices (natural numbers) to transfinite step-indices (ordi-

nals). Concretely, we transform the Coq-based step-indexed

logic Iris to Transfinite Iris, and demonstrate its effective-

ness in proving termination and termination-preserving re-

finement for higher-order stateful programs.
CCS Concepts: • Theory of computation → Separation

logic; Hoare logic.Keywords: Separation logic, Iris, liveness properties, step-

indexing, transfinite, ordinalsACM Reference Format:Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Rob-

bert Krebbers, Derek Dreyer, and Lars Birkedal. 2021. Transfinite

Iris: Resolving an Existential Dilemma of Step-Indexed Separation

Logic. In Proceedings of the 42nd ACM SIGPLAN International Con-

ference on Programming Language Design and Implementation (PLDI

’21), June 20ś25, 2021, Virtual, Canada. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3453483.3454031

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454031

1 IntroductionIn the past decade, separation logics [51] have emerged as

an essential tool for verifying complex stateful programs.

Of particular note are the so-called step-indexed separation

logics, including VST [5, 15, 31], HOCAP [55], iCAP [54],

and Iris [35ś37, 41]. The distinguishing feature of these step-

indexed separation logics is their ability to reason modularly

about programsÐand their ability to build semantic models

of programming languagesÐwith łcyclicž features like recur-

sive types and higher-order state (pointers to higher-order

objects). Step-indexing has proven indispensable in a variety

of major verification efforts, in languages ranging from C [5]

to Go [16] to OCaml [48] to Rust [20, 33, 34] to Scala [29].

Unfortunately, all the existing step-indexed separation log-

ics suffer from a shared Achilles heel: they support reasoning

about safety properties (łbad things never happenž), but not

liveness properties (łgood things eventually happenž). There

is a simple intuitive explanation for this limitation: the whole

idea of step-indexing is to give semantics to a program based

only on its finitary behavior (i.e., the finite prefixes of its

traces), and safety properties are precisely those properties

of a program that can be determined from examining its

finitary behavior. In contrast, determining whether a pro-

gram satisfies a liveness property fundamentally requires

examination of its infinite traces.
Nevertheless, as we will show in this paper, it is in fact

possible to equip step-indexed separation logics with sup-

port for liveness reasoning. Specifically, we will show how

to transform the step-indexed separation logic Iris into a

new logic Transfinite Iris that (unlike Iris) supports the

verification of two essential liveness propertiesÐtermination

and termination-preserving refinementÐin the presence of

higher-order state. In order to do so, we need to revisit the

most basic foundations of step-indexed separation logics,

because it turns out that the root of the problem concerns

the very notion of what a łstep-indexž is. But before we get

there, let us begin with a concrete example to illustrate the

kind of properties we are interested in proving.
80

This work is licensed under a Creative Commons Attribution International 4.0 License.

42

Distributed Causal Memory: Modular Specification and

Verification in Higher-Order Distributed Separation Logic

LÉON GONDELMAN, Aarhus University, Denmark

SIMON ODDERSHEDE GREGERSEN, Aarhus University, Denmark

ABEL NIETO, Aarhus University, Denmark

AMIN TIMANY, Aarhus University, Denmark

LARS BIRKEDAL, Aarhus University, Denmark

We present the first specification and verification of an implementation of a causally-consistent distributed

database that supports modular verification of full functional correctness properties of clients and servers. We

specify and reason about the causally-consistent distributed database in Aneris, a higher-order distributed

separation logic for an ML-like programming language with network primitives for programming distributed

systems. We demonstrate that our specifications are useful, by proving the correctness of small, but tricky,

synthetic examples involving causal dependency and by verifying a session manager library implemented on

top of the distributed database. We use Aneris’s facilities for modular specification and verification to obtain a

highly modular development, where each component is verified in isolation, relying only on the specifications

(not the implementations) of other components. We have used the Coq formalization of the Aneris logic to

formalize all the results presented in the paper in the Coq proof assistant.

CCS Concepts: • Theory of computation→ Program verification; Distributed algorithms; Separation

logic.

Additional Key Words and Phrases: Distributed systems, causal consistency, separation logic, higher-order

logic, concurrency, formal verification

ACM Reference Format:

Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, and Lars Birkedal. 2021. Distributed

Causal Memory: Modular Specification and Verification in Higher-Order Distributed Separation Logic. Proc.

ACM Program. Lang. 5, POPL, Article 42 (January 2021), 29 pages. https://doi.org/10.1145/3434323

1 Introduction

The ubiquitous distributed systems of the present day internet often require highly available and

scalable distributed data storage solutions. The CAP theorem [Gilbert and Lynch 2002] states that a

distributed database cannot at the same time provide consistency, availability, and partition (failure)

tolerance. Hence, many such systems choose to sacrifice aspects of data consistency for the sake of

availability and fault tolerance [Bailis et al. 2013; Chang et al. 2008; Lloyd et al. 2011; Tyulenev et al.

2019]. In those systems different replicas of the database may, at the same point in time, observe

different, inconsistent data. Among different notions of weaker consistency guarantees, a popular

one is causal consistency. With causal consistency different replicas can observe different data, yet,

it is guaranteed that data are observed in a causally related order: if a node 𝑛 observes an operation

Authors’ addresses: Léon Gondelman, Aarhus University, Denmark, gondelman@cs.au.dk; Simon Oddershede Gregersen,

Aarhus University, Denmark, gregersen@cs.au.dk; Abel Nieto, Aarhus University, Denmark, abeln@cs.au.dk; Amin Timany,

Aarhus University, Denmark, timany@cs.au.dk; Lars Birkedal, Aarhus University, Denmark, birkedal@cs.au.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART42

https://doi.org/10.1145/3434323

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 42. Publication date: January 2021.

7

Fully Abstract from Static to Gradual
KOEN JACOBS, imec-DistriNet, KU Leuven, Belgium

AMIN TIMANY, Aarhus University, Denmark

DOMINIQUE DEVRIESE, Vrije Universiteit Brussel, Belgium

What is a good gradual language? Siek et al. have previously proposed the refined criteria, a set of formal ideas

that characterize a range of guarantees typically expected from a gradual language. While these go a long way,

they are mostly focused on syntactic and type safety properties and fail to characterize how richer semantic

properties and reasoning principles that hold in the static language, like non-interference or parametricity for

instance, should be upheld in the gradualization.

In this paper, we investigate and argue for a new criterion previously hinted at by Devriese et al.: the

embedding from the static to the gradual language should be fully abstract. Rather than preserving an arbitrarily

chosen interpretation of source language types, this criterion requires that all source language equivalences

are preserved. We demonstrate that the criterion weeds out erroneous gradualizations that nevertheless

satisfy the refined criteria. At the same time, we demonstrate that the criterion is realistic by reporting on

a mechanized proof that the property holds for a standard example: GTLC𝜇 , the natural gradualization of

STLC𝜇 , the simply typed lambda-calculus with equirecursive types. We argue thus that the criterion is useful

for understanding, evaluating, and guiding the design of gradual languages, particularly those which are

intended to preserve source language guarantees in a rich way.

CCS Concepts: • Theory of computation→ Program reasoning; Type structures; Type theory; Modal

and temporal logics; Logic and verification; • Software and its engineering→General programming languages;

Compilers.
Additional Key Words and Phrases: gradual typing, fully abstract compilation, fully abstract embedding

ACM Reference Format:Koen Jacobs, Amin Timany, and Dominique Devriese. 2021. Fully Abstract from Static to Gradual. Proc. ACM

Program. Lang. 5, POPL, Article 7 (January 2021), 30 pages. https://doi.org/10.1145/3434288

1 INTRODUCTIONThe Aim of Gradual Typing. The aim of gradual typing is to enable a “programmer-controlled

migration between dynamic and static typing” [Siek and Taha 2006]. That is, given a static type

system, the goal is to construct a gradual type system in which existing untyped codebases can

be gradually migrated to follow the static typing discipline. To live up to this ambition, a gradual

language should be well designed:(1) It should directly support existing untyped and typed programs and not break their well-

formedness or well-typedness, or modify their semantics.

Authors’ addresses: Koen Jacobs, imec-DistriNet, KU Leuven, Leuven, Belgium, koen.jacobs@kuleuven.be; Amin Timany,

Aarhus University, Aarhus, Denmark, timany@cs.au.dk; Dominique Devriese, Vrije Universiteit Brussel, Belgium, dominique.

devriese@vub.be.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART7https://doi.org/10.1145/3434288

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 7. Publication date: January 2021.

On Models of Higher-Order Separation
Logic

Aleš Bi
zjak

1 Lars B
irkedal

2

Departm
ent of

Computer Scienc
e, Aar

hus Universi
ty, Denmark

Abstract

We show how tools from catego
rical lo

gic can be used to give a genera
l accou

nt of models of high
er-orde

r

separa
tion logic with a sublog

ic of so-c
alled persist

ent predica
tes satisfy

ing the usual r
ules of high

er-orde
r

logic.
The models o

f separ
ation logic are based

on a notion
of reso

urce, a
partial

commutative
monoid,

and

the persist
ent predica

tes can be defined
using a modality

. We classify
well-be

haved
sublog

ics of pers
istent

predica
tes in terms of inte

rior op
erators

on the partial
commutative

monoid
of reso

urces.
We further

show

how the genera
l constru

ctions
can be used to recover

the model of Iris, a state-o
f-the-a

rt higher
-order

separa
tion logic with guarde

d recursi
ve predica

tes.

Keyword
s: separa

tion logic, m
odel, m

odaliti
es

1 Introduction

In recent years we have seen many models of variatio
ns of higher-order separation

logic, e.g., [4,14,6,
3,1,16,1

0,9,11].
Separation

logic is a substructural logic and the

models are all based on some notion of resource. Originally, resources were heap

fragments, and predicates in the logic described sets of heaps. For instance, the

points-to predicate � �→ 3 described those heaps that contain the value 3 at location

�. Later on, more elaborate notions of resources were used because they allow for

stronger specifications and they can be used to keep track of data and relation
ships

not explicitly given in the program
code.

With these richer notions of resources it has often been noticed
that it is very

useful to be also able to single out and work with predicates that are “persisten
t”.

Persisten
t predicates

are, in particular, duplicable (meaning P � P ⇔ P), and

they obey more standard (not substructural) logical
rules. One way this has been

achieved is via a modality � (pronounced always) which is a necessity
-like modality

and obeys rules akin to those obeyed by the bang modality ! of linear logic. Such a

1 Email: abizjak
@cs.au.d

k

2 Email: birked
al@cs.au.d

k

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 336 (2018) 57–78

1571-0661/© 2018 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.03.016

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

89

Robust and Compositional Verification of Object

Capability Patterns
DAVID SWASEY, MPI-SWS, Germany
DEEPAK GARG, MPI-SWS, Germany
DEREK DREYER, MPI-SWS, Germany

In scenarios such as web programming, where code is linked together from multiple sources, object capability

patterns (OCPs) provide an essential safeguard, enabling programmers to protect the private state of their

objects from corruption by unknown and untrusted code. However, the benefits of OCPs in terms of program

verification have never been properly formalized. In this paper, building on the recently developed Iris

framework for concurrent separation logic, we develop OCPL, the first program logic for compositionally

specifying and verifying OCPs in a language with closures, mutable state, and concurrency. The key idea

of OCPL is to account for the interface between verified and untrusted code by adopting a well-known

idea from the literature on security protocol verification, namely robust safety. Programs that export only

properly wrapped values to their environment can be proven robustly safe, meaning that their untrusted

environment cannot violate their internal invariants. We use OCPL to give the first general, compositional,

and machine-checked specs for several commonly-used OCPsÐincluding the dynamic sealing, membrane, and

caretaker patternsÐwhich we then use to verify robust safety for representative client code. All our results are

fully mechanized in the Coq proof assistant.
CCS Concepts: • Security and privacy → Security requirements; • Theory of computation → Program

specifications; Separation logic;Additional Key Words and Phrases: object capabilities, robust safety, separation logic, logical relations, compo-

sitional verificationACM Reference Format:David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and Compositional Verification of Object

Capability Patterns. Proc. ACM Program. Lang. 1, OOPSLA, Article 89 (October 2017), 26 pages. https://doi.org/

10.1145/3133913
1 INTRODUCTIONSuppose you have a mutable reference ℓ whose contents you care about, meaning that you want to

impose some invariant on it (e.g., ℓ always points to an even number). Suppose further that you

want to share access to ℓ with code you did not write and that you do not trust to preserve the

invariant on ℓ. To ensure the invariant on ℓ is maintained, you therefore do not want to pass the

untrusted code the reference ℓ directly. Instead, you might construct a read-only wrapper w as

follows:

readonly ≜ λr . λ . !r

w ≜ readonly ℓ

Authors’ addresses: MPI-SWS, Saarland Informatics Campus (SIC), Campus E1.5, 66123 Saarbrücken, Germany, {swasey, dg,

dreyer}@mpi-sws.org.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2017 Copyright held by the owner/author(s).

2475-1421/2017/10-ART89https://doi.org/10.1145/3133913
Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 89. Publication date: October 2017.

This work is licensed under a Creative Commons Attribution 4.0 International License.

A Relational Model of Types-and-Effects in

Higher-Order Concurrent Separation Logic

Morten Krogh-Jespersen

Aarhus University, Denmark

mkj@cs.a
u.dk

Kasper Svendsen

University of Cambridge, UK

ks775@
cl.cam.ac.uk

Lars Birkedal

Aarhus University, Denmark

birkeda
l@cs.au

.dk

Abstract

Recently we have seen a renewed interest in programming lan-

guages that tame the complexity of state and concurrency through

refined type systems with more fine-grained control over effects. In

addition to simplifying reasoning and eliminating whole classes of

bugs, statically tracking effects opens the door to advanced com-

piler optimizations.

In this paper we present a relational model of a type-and-effect

system for a higher-order, concurrent programming language. The

model precisely captures the semantic invariants expressed by the

effect annotations. We demonstrate that these invariants are strong

enough to prove advanced program transformations, including au-

tomatic parallelization of expressions with suitably disjoint effects.

The model also supports refinement proofs between abstract data

type implementations with different internal data representations,

including proofs that fine-grained concurrent algorithms refine their

coarse-grained counterparts. This is the first model for such an ex-

pressive language that supports both effect-based optimizations and

data abstraction.

The logical relation is defined in Iris, a state-of-the-art higher-

order concurrent separation logic. This greatly simplifies proving

well-definedness of the logical relation and provides us with a

powerful logic for reasoning in the model.

Categories and Subject Descriptors D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory; F.3.1 [Logics and mean-

ings of programs]: Specifying and Verifying and Reasoning about

Programs

Keywords Separation logic, type-and-effect system, logical rela-

tions, program transformation, automatic parallelisation

1. Introduction

Programming with and reasoning about effects in higher-order pro-

grams is well-known to be very challenging. Over the years, there

have therefore been many proposals of refined type systems for

taming and simplifying reasoning about effectful programs. Exam-

ples include alias types [28], capability type systems [23], linear

type systems [14, 17, 20] Hoare type theory [21], permissions-

based type systems [24], type-and-effect systems [5, 6, 15, 19],

etc. Lately, we have also witnessed some larger-scale implemen-

tation efforts on higher-order programming languages, e.g., the

Mezzo programming language [24] and the Rust programming lan-

guage [27], which employ refined type systems to control the use

of state in the presence of concurrency.

In this paper, we provide a logical account of an expressive

region-based type-and-effect system for a higher-order concurrent

programming language λref,conc with general references (higher-

order store). The type-and-effect system is taken from [11]; it is

inspired by Lucassen and Gifford’s seminal work [15, 19], but also

features a notion of public and private regions, which can be used to

limit interference from threads running in parallel. Hence it can be

used to express effect-based optimizations, as emphasized for type-

and-effect systems for sequential languages by Benton et al., see,

e.g., [5, 6]. Effect-based optimizations are examples of so-called

“free theorems”, i.e., they just depend on the types and effects

of the involved expressions, not on the particular expressions in-

volved. The most interesting effect-based optimization is a paral-

lelization theorem expressing the equivalence of running expres-

sions e1 and e2 in parallel and running them sequentially, assuming

their effects are suitably disjoint. Note that this is a relational prop-

erty, i.e., the intended invariants of the type-and-effect system are

relational in nature. Our logical account of the type-and-effect sys-

tem thus consists of a logical relations interpretation of the types

in a program logic, and we prove that logical relatedness implies

contextual equivalence. We show that our logical relations inter-

pretation is strong enough to prove the soundness of effect-based

optimizations, in particular the challenging parallelization theorem.

Since the programming language λref,conc includes higher-order

store, it is non-trivial to define a logical relations interpretation of

the types, as one is faced with the well-known type-world circular-

ity [1] (see [10] for an overview). Here we factor out this challenge,

by using a state-of-the-art program logic, Iris [16], as the logic in

which we express the logical relations. Iris has direct support for

impredicative invariants, as needed for defining logical relations

for general references. Iris also supports reasoning about concur-

rency; in particular, it supports a form of rely-guarantee reasoning

about shared state. We use this facility to capture invariants of pri-

vate and public regions. Moreover, we show, using simple synthetic

examples, how we can also use the logic to prove that syntactically

ill-typed programs obey the semantic invariants enforced by the

type system. This is important in practice: both Mezzo and Rust

contain facilities for programming with statically ill-typed expres-

sions (Mezzo uses dynamic type checks [25] and Rust allows for

including unsafe code in statically typed programs [27]) thus mod-

els of type-and-effect systems should preferably support reasoning

about combinations of statically ill-typed and statically well-typed

programs.

C
o
ns
ist

en
t * Complete

*
W
e
llD
o
cum

ented*Easy
to

Re
u
se
*

*
Evaluated

*
P
O
P
L
*

Arti
fact

*
A
E
C

Interactive Proofs in Higher-Order
Concurrent Separation Logic

Robbert Krebbers ∗Delft University of Technology,The Netherlandsmail@robbertkrebbers.nl

Amin Timanyimec-Distrinet, KU Leuven, Belgium
amin.timany@cs.kuleuven.be

Lars BirkedalAarhus University, Denmarkbirkedal@cs.au.dk

Abstract
When using a proof assistant to reason in an embedded logic – like

separation logic – one cannot benefit from the proof contexts and

basic tactics of the proof assistant. This results in proofs that are

at a too low level of abstraction because they are cluttered with

bookkeeping code related to manipulating the object logic.

In this paper, we introduce a so-called proof mode that extends

the Coq proof assistant with (spatial and non-spatial) named proof

contexts for the object logic. We show that thanks to these contexts

we can implement high-level tactics for introduction and elimination

of the connectives of the object logic, and thereby make reasoning

in the embedded logic as seamless as reasoning in the meta logic of

the proof assistant. We apply our method to Iris: a state of the art

higher-order impredicative concurrent separation logic.

We show that our method is very general, and is not just limited to

program verification. We demonstrate its generality by formalizing

correctness proofs of fine-grained concurrent algorithms, derived

constructs of the Iris logic, and a unary and binary logical relation

for a language with concurrency, higher-order store, polymorphism,

and recursive types. This is the first formalization of a binary logical

relation for such an expressive language. We also show how to use

the logical relation to prove contextual refinement of fine-grained

concurrent algorithms.Categories and Subject Descriptors D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-

ings of Programs]: Specifying and Verifying and Reasoning about

Programs
Keywords Separation Logic, Interactive Theorem Proving, Coq,

Fine-grained Concurrency, Logical Relations1. IntroductionIn the last decade, there has been tremendous progress on program

logics for increasingly sophisticated programming languages [43,

17, 16, 13, 18, 42, 40, 11, 31, 24, 23, 26]. Part of the success of

these logics stems from the fact that they have built-in support for

reasoning about challenging programming language features. For

∗This research was carried out while this author was at Aarhus University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact

the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)

869-0481.
POPL ’17, January 18 - 20, 2017, Paris, France

Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4660-3/17/01. . . $15.00.

DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3009837.3009855

instance, they include separating conjunction of separation logic for

reasoning about mutable data structures, invariants for reasoning

about sharing, guarded recursion for reasoning about various forms

of recursion, and higher-order quantification for giving generic

modular specifications to libraries.
Due to these built-in features, modern program logics are very

different from the logics of general purpose proof assistants. There-

fore, to use a proof assistant to formalize reasoning in a program

logic, one needs to represent the program logic in that proof assis-

tant, and then, to benefit from the built-in features of the program

logic, use the proof assistant to reason in the embedded logic.

Reasoning in an embedded logic using a proof assistant tradition-

ally results in a lot of overhead. Most of this overhead stems from

the fact that when embedding a logic, one can no longer make use

of the proof assistant’s infrastructure for managing hypotheses. In

separation logic this overhead is evident from the fact that proposi-

tions represent resources (they are spatial) and can thus be used at

most once, which is very different from hypotheses in conventional

logic that can be duplicated at will.
To remedy this situation, we present a so-called proof mode that

extends the Coq proof assistant with (spatial and non-spatial) named

contexts for managing the hypotheses of the object logic. We show

that using our proof mode we can make reasoning in the embedded

logic as seamless as reasoning in the meta logic of Coq. Although

we believe that our proof mode is very generic, and can be applied

to a variety of different embedded logics, we apply it to a specific

logic in this paper, Iris: a state of the art impredicative higher-order

separation logic for fine-grained concurrency [24, 23, 26]. We call

the implementation on top of Iris IPM: Iris Proof Mode.

Iris is an interesting showcase for our proof mode, because

unlike conventional program logics, it cannot only be used to

reason about partial program correctness, but it also supports other

kinds of reasoning. For starters, Iris differs from other (concurrent)

program logics by not baking in particular reasoning principles,

but by providing a minimal set of primitive constructs using which

more advanced reasoning constructs can be defined in the logic.

Furthermore, Iris can be used to define unary and binary relational

interpretations of type systems and for proving theorems about those

interpretations, e.g., that if two terms are related in the relational

interpretation of a type, then they are contextually equivalent.

The type systems can range from ML-like type systems, such

as Fµ,ref ,conc (System F with recursive types, references, and

concurrency), to more expressive type-and-effect systems [27], or

sophisticated ownership-based type systems such as the Rust type

system [14]. We show that IPM supports all of these different kinds

of reasoning.One may wonder why we develop a reasoning tool for a logic

like Iris in a general purpose proof assistant, instead of building a

standalone tool. The main reason for using a proof assistant is that

77

MoSeL: A General, Extensible Modal Framework for

Interactive Proofs in Separation Logic

ROBBERT KREBBERS, Delft University of Technology, The Netherlands

JACQUES-HENRI JOURDAN, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, France

RALF JUNG, MPI-SWS, Germany

JOSEPH TASSAROTTI, Carnegie Mellon University, USA

JAN-OLIVER KAISER, MPI-SWS, Germany

AMIN TIMANY, imec-Distrinet, KU Leuven, Belgium

ARTHUR CHARGUÉRAUD, Inria & Université de Strasbourg, CNRS, ICube, France

DEREK DREYER, MPI-SWS, Germany

A number of tools have been developed for carrying out separation-logic proofs mechanically using an

interactive proof assistant. One of the most advanced such tools is the Iris Proof Mode (IPM) for Coq, which

offers a rich set of tactics for making separation-logic proofs look and feel like ordinary Coq proofs. However,

IPM is tied to a particular separation logic (namely, Iris), thus limiting its applicability.

In this paper, we propose MoSeL, a general and extensible Coq framework that brings the benefits of IPM to

a much larger class of separation logics. Unlike IPM, MoSeL is applicable to both affine and linear separation

logics (and combinations thereof), and provides generic tactics that can be easily extended to account for the

bespoke connectives of the logics with which it is instantiated. To demonstrate the effectiveness of MoSeL, we

have instantiated it to provide effective tactical support for interactive and semi-automated proofs in six very

different separation logics.

CCS Concepts: • Theory of computation → Logic and verification; Separation logic; Program verifi-

cation;

Additional Key Words and Phrases: Separation logic, logic of bunched implications, modal logic, Coq proof

assistant, interactive theorem proving

ACM Reference Format:

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany,

Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive

Proofs in Separation Logic. Proc. ACM Program. Lang. 2, ICFP, Article 77 (September 2018), 30 pages. https:

//doi.org/10.1145/3236772

1 INTRODUCTION

Over the past 20 years, separation logic [O’Hearn et al. 2001; Reynolds 2002] has come to play an

essential role in the program verification toolbox, with a wide range of variations and applications.

Authors’ addresses: Robbert Krebbers, Delft University of Technology, mail@robbertkrebbers.nl; Jacques-Henri Jour-

dan, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, jacques-henri.jourdan@lri.fr; Ralf Jung, MPI-SWS∗ , jung@mpi-

sws.org; Joseph Tassarotti, Carnegie Mellon University, jtassaro@andrew.cmu.edu; Jan-Oliver Kaiser, MPI-SWS∗ ,

janno@mpi-sws.org; Amin Timany, imec-Distrinet, KU Leuven, amin.timany@cs.kuleuven.be; Arthur Charguéraud, Inria,

arthur.chargueraud@inria.fr; Derek Dreyer, MPI-SWS∗ , dreyer@mpi-sws.org.

∗ Saarland Informatics Campus.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART77

https://doi.org/10.1145/3236772

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 77. Publication date: September 2018.

78

Mtac2: Typed Tactics for Backward Reasoning in Coq

JAN-OLIVER KAISER, MPI-SWS, Germany

BETA ZILIANI, CONICET and FAMAF, UNC, Argentina

ROBBERT KREBBERS, Delft University of Technology, The Netherlands

YANN RÉGIS-GIANAS, IRIF, CNRS, Paris Diderot, and INRIA PI.R2, France

DEREK DREYER, MPI-SWS, Germany
Coq supports a range of built-in tactics, which are engineered primarily to support backward reasoning. Starting

from a desired goal, the Coq programmer can use these tactics to manipulate the proof state interactively,

applying axioms or lemmas to break the goal into subgoals until all subgoals have been solved. Additionally, it

provides support for tactic programming via OCaml and Ltac, so that users can roll their own custom proof

automation routines.Unfortunately, though, these tactic languages share a significant weakness. They do not offer the tactic pro-

grammer any static guarantees about the soundness of their custom tactics, making large tactic developments

difficult to maintain. To address this limitation, Ziliani et al. previously proposed Mtac, a new typed approach

to custom proof automation in Coq which provides the static guarantees that OCaml and Ltac are missing.

However, despite its name, Mtac is really more of a metaprogramming language than it is a full-blown tactic

language: it misses an essential feature of tactic programming, namely the ability to directly manipulate Coq’s

proof state and perform backward reasoning on it.

In this paper, we present Mtac2, a next-generation version of Mtac that combines its support for typed

metaprogramming with additional support for the programming of backward-reasoning tactics in the style

of Ltac. In so doing, Mtac2 introduces a novel feature in tactic programming languages—what we call typed

backward reasoning. With this feature, Mtac2 is capable of statically ruling out several classes of errors that

would otherwise remain undetected at tactic definition time. We demonstrate the utility of Mtac2’s typed

tactics by porting several tactics from a large Coq development, the Iris Proof Mode, from Ltac to Mtac2.

CCS Concepts: • Theory of computation → Type theory; Proof theory;

Additional Key Words and Phrases: Theorem Proving, Tactic Languages, Metaprogramming, Dependent Types,

Coq
ACM Reference Format:Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas, and Derek Dreyer. 2018. Mtac2: Typed

Tactics for Backward Reasoning in Coq. Proc. ACM Program. Lang. 2, ICFP, Article 78 (September 2018),

31 pages. https://doi.org/10.1145/32367731 INTRODUCTIONThe Coq proof assistant provides a rich dependently-typed framework in which to formalize

mathematics and programming language metatheory. Although Coq proofs ultimately compile

down to proof terms in the language of Type Theory, it is not practical for Coq programmers to

Authors’ addresses: Jan-Oliver Kaiser, MPI-SWS∗, janno@mpi-sws.org; Beta Ziliani, CONICET and FAMAF, UNC,

beta@mpi-sws.org; Robbert Krebbers, Delft University of Technology, mail@robbertkrebbers.nl; Yann Régis-Gianas, IRIF,

CNRS, Paris Diderot, and INRIA PI.R2, yrg@pps.univ-paris-diderot.fr; Derek Dreyer, MPI-SWS∗, dreyer@mpi-sws.org.

∗ Saarland Informatics Campus.Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART78https://doi.org/10.1145/3236773

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 78. Publication date: September 2018.

32

The High-Level Benefits of Low-Level Sandboxing

MICHAEL SAMMLER, MPI-SWS and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

DEEPAK GARG, MPI-SWS, Germany

DEREK DREYER, MPI-SWS, Germany

TADEUSZ LITAK, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Sandboxing is a common technique that allows low-level, untrusted components to safely interact with trusted

code. However, previous work has only investigated the low-level memory isolation guarantees of sandboxing,

leaving open the question of the end-to-end guarantees that sandboxing affords programmers. In this paper,

we fill this gap by showing that sandboxing enables reasoning about the known concept of robust safety, i.e.,

safety of the trusted code even in the presence of arbitrary untrusted code. To do this, we first present an

idealized operational semantics for a language that combines trusted code with untrusted code. Sandboxing is

built into our semantics. Then, we prove that safety properties of the trusted code (as enforced through a rich

type system) are upheld in the presence of arbitrary untrusted code, so long as all interactions with untrusted

code occur at the łanyž type (a type inhabited by all values). Finally, to alleviate the burden of having to

interact with untrusted code at only the łanyž type, we formalize and prove safe several wrappers, which

automatically convert values between the łanyž type and much richer types. All our results are mechanized in

the Coq proof assistant.

CCS Concepts: • Security and privacy → Logic and verification; • Theory of computation → Program-

ming logic.

Additional Key Words and Phrases: Sandboxing, robust safety, Iris, type systems, logical relations, language-

based security

ACM Reference Format:

Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. 2020. The High-Level Benefits of Low-Level

Sandboxing. Proc. ACM Program. Lang. 4, POPL, Article 32 (January 2020), 32 pages. https://doi.org/10.1145/

3371100

1 INTRODUCTION

The Internet makes it easy to download useful software components from untrusted authors.

While it is convenient to integrate such untrusted components into a trusted (i.e., otherwise safe)

application, doing so also incurs security risks. The untrusted code could violate the integrity of

the trusted application’s private data structures, steal secrets, or take over the system and install

malicious software. In all these cases, the untrusted code violates expected safety properties of the

trusted application. Thus, it is important to ensure that an application maintains its expected safety

properties even when linked and co-executed with arbitrary untrusted code. This is often called

Authors’ addresses: Michael Sammler, MPI-SWS, Saarland Informatics Campus, Germany, msammler@mpi-sws.org,

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deepak Garg, MPI-SWS, Saarland Informatics Campus, Ger-

many, dg@mpi-sws.org; Derek Dreyer, MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org; Tadeusz

Litak, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, tadeusz.litak@fau.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART32

https://doi.org/10.1145/3371100

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 32. Publication date: January 2020.
This work

is licensed
under a C

reative Co
mmons Attrib

ution 4.0 Intern
ational Li

cense.

Safe Systems Programming in Rust:
The Promise and the Challenge

Ralf Jung
MPI-SWS,Germany

Jacques-Henri JourdanUniversité Paris-Saclay, CNRS, LRI,France
Robbert Krebbers

TU Delft,The Netherlands

Derek Dreyer
MPI-SWS,Germany

Key Insights
• Rust is the first industry-supported programming language

to overcome the longstanding tradeoff between the safety

guarantees of higher-level languages (like Java) and the

control over resource management provided by lower-level

“systems programming” languages (like C and C++).

• It tackles this challenge using a strong type system based

on the ideas of ownership and borrowing, which statically

prohibits the mutation of shared state. This approach en-

ables many common systems programming pitfalls to be

detected at compile time.• There are a number of data types whose implementations

fundamentally depend on shared mutable state and thus

cannot be typechecked according to Rust’s strict ownership

discipline. To support such data types, Rust embraces the

judicious use of unsafe code encapsulated within safe APIs.

• The proof technique of semantic type soundness, together

with advances in separation logic and machine-checked

proof, has enabled us to begin building rigorous formal

foundations for Rust as part of the RustBelt project.There is a longstanding tension in programming language

design between two seemingly irreconcilable desiderata.

• Safety. We want strong type systems that rule out large

classes of bugs statically. We want automatic memory

management. We want data encapsulation, so that we can

enforce invariants on the private representations of objects

and be sure that they will not be broken by untrusted code.

• Control. At least for “systems programming” applications

like web browsers, operating systems, or game engines,

where performance or resource constraints are a primary

concern, we want to determine the byte-level representa-

tion of data. We want to optimize the time and space usage

of our programs using low-level programming techniques.

We want access to the “bare metal” when we need it.

Sadly, the conventional wisdom goes, we can’t have

everything we want. Languages like Java give us strong

safety, but it comes at the expense of control. As a result, for

many systems programming applications, the only realistic

option is to use a language like C or C++ that provides

fine-grained control over resource management. However,

this control comes at a steep cost. For example, Microsoft

recently reported that 70% of the security vulnerabilities they

fix are due to memory safety violations [33], precisely the

type of bugs that strong type systems were designed to rule

out. Likewise, Mozilla reports that the vast majority of critical

bugs they find in Firefox are memory-related [16]. If only

there were a way to somehow get the best of both worlds: a

safe systems programming language with control. . .

Enter Rust. Sponsored by Mozilla and developed actively

over the past decade by a large and diverse community of

contributors, Rust supports many common low-level program-

ming idioms and APIs derived from modern C++. However,

unlike C++, Rust enforces the safe usage of these APIs with

a strong static type system.In particular, like Java, Rust protects programmers from

memory safety violations (e.g., “use-after-free” bugs). But

Rust goes further by defending programmers against other,

more insidious anomalies that no other mainstream language

can prevent. For example, consider data races: unsynchro-

nized accesses to shared memory (at least one of which is

a write). Even though data races effectively constitute unde-

fined (or weakly-defined) behavior for concurrent code, most

“safe” languages (such as Java and Go) permit them, and they

are a reliable source of concurrency bugs [35]. In contrast,

Rust’s type system rules out data races at compile time.

Rust has been steadily gaining in popularity, to the point

that it is now being used internally by many major indus-

trial software vendors (such as Dropbox, Facebook, Ama-

zon, and Cloudflare) and has topped StackOverflow’s list

of “most loved” programming languages for the past four

years. Microsoft’s Security Response Center Team recently

announced that it is actively exploring an investment in the

use of Rust at Microsoft to stem the tide of security vulnera-

bilities in system software [25, 8].
The design of Rust draws deeply from the wellspring of

academic research on safe systems programming. In particu-

lar, the most distinctive feature of Rust’s design—in relation

to other mainstream languages—is its adoption of an own-

ership type system (which in the academic literature is often

referred to as an affine or substructural type system [36]).

Ownership type systems help the programmer enforce safe

patterns of lower-level programming by placing restrictions

on which aliases (references) to an object may be used to

mutate it at any given point in the program’s execution.
1

2020/5/1

Compositional Non-Interference

for Fine-Grained Concurrent Programs

Dan Frumin

Radboud University

Robbert Krebbers

Delft University of Technology

Lars Birkedal

Aarhus University

Abstract—Non-interference is a program property that ensures

the absence of information leaks. In the context of programming

languages, there exist two common approaches for establishing

non-interference: type systems and program logics. Type systems

provide strong automation (by means of type checking), but they

are inherently restrictive in the kind of programs they support.

Program logics support challenging programs, but they typically

require significant human assistance, and cannot handle modules

or higher-order programs.

To connect these two approaches, we present SeLoC—a sep-

aration logic for non-interference, on top of which we build a

type system using the technique of logical relations. By building

a type system on top of separation logic, we can compositionally

verify programs that consist of typed and untyped parts. The

former parts are verified through type checking, while the latter

parts are verified through manual proof.

The core technical contribution of SeLoC is a relational form

of weakest preconditions that can track information flow using

separation logic resources. SeLoC is fully machine-checked, and

built on top of the Iris framework for concurrent separation logic

in Coq. The integration with Iris provides seamless support for

fine-grained concurrency, which was beyond the reach of prior

type systems and program logics for non-interference.

Index Terms—non-interference, logical relations, separation

logic, fine-grained concurrency, Coq, Iris

I. INTRODUCTION

Non-interference is a form of information flow control (IFC)

used to express that confidential information cannot leak

to attackers. To establish non-interference of modern pro-

grams, it is crucial to develop verification techniques that

support challenging programming paradigms and programming

constructs such as concurrency. Furthermore, to scale up

these techniques to larger programs, it is important that they

are compositional. That is, they should make it possible to

establish non-interference of program modules in isolation,

without having to consider all possible interference from the

environment and other program modules.

Much effort has been put into developing these verification

techniques. In terms of expressivity, techniques have been

developed that support dynamically allocated references and

higher-order functions [1]–[3], and concurrency [4]–[10].

Despite recent advancements, the expressivity of available

techniques for non-interference still lags behind the expressivity

of techniques for functional correctness, which have seen major

breakthroughs since the seminal development of concurrent

separation logic [11], [12]. There are several reasons for this.

First, a lot of prior work on non-interference focused on

type systems and type system-like logics, e.g., [1], [4], [6], [9],

[10]. Such systems provide strong automation (by means of

type checking), but lack capabilities to reason about functional

correctness, and are thus inherently restrictive in the kind of

programs they can verify. For example, it may be the case that

the confidentiality of the contents of a reference depends on

runtime information instead of solely static information (this

is called value-dependent classification [7], [13]–[16]).

Second, proving non-interference is harder than proving

functional correctness. While functional correctness is a prop-

erty about each single run of a program, non-interference is

stated in terms of multiple runs of the same program. One

has to show that for different values of confidential inputs, the

attacker cannot observe a different behavior.

To overcome the aforementioned shortcomings, we take a

new approach that combines program logics and type systems:

we present a concurrent separation logic for non-interference

on top of which we build a type system for non-interference.

Program modules whose non-interference relies on functional

correctness (and thus cannot be type checked) can be assigned

a type through a manual proof in our separation logic. This

combination of separation logic and type checking makes

it possible compositionally to establish non-interference of

programs that consist of untyped and typed parts.

Although ideas from concurrent separation logic have been

employed in the context of non-interference before [9], [10], we

believe that in the context of non-interference the combination

of typing and separation logic is new. Moreover, our approach

provides a number of other advantages compared to prior work:

• Our separation logic supports fine-grained concurrency.

That is, it can verify programs that use low-level atomic

operations like compare-and-set to implement lock-free

concurrent data structures and high-level synchronization

mechanisms such as locks/mutexes. In prior work, such

mechanisms were taken to be language primitives.

• Our separation logic is higher-order, making it possible

to assign very general specifications to program modules.

• Our separation logic is relational, making it possible to

reason about multiple runs of a program with different

values for confidential inputs.

• Our separation logic provides a powerful invariant mech-

anism to describe protocols on the shared state, making

it possible to reason about sophisticated forms of sharing,

as in value-dependent classifications.

In order to build our logic we make use of the Iris framework

for concurrent separation logic [17]–[20], which provides basic

1

RefinedC: Automating the Foundational Verification

of C Code with Refined Ownership Types

Michael SammlerMPI-SWSGermanymsammler@mpi-sws.org

Rodolphe LepigreMPI-SWSGermanylepigre@mpi-sws.org

Robbert KrebbersRadboud University NijmegenThe Netherlandsmail@robbertkrebbers.nl

Kayvan MemarianUniversity of CambridgeUKkayvan.memarian@cl.cam.ac.uk

Derek DreyerMPI-SWSGermanydreyer@mpi-sws.org

Deepak GargMPI-SWSGermanydg@mpi-sws.org

Abstract
Given the central role that C continues to play in systems

software, and the difficulty of writing safe and correct C

code, it remains a grand challenge to develop effective for-

mal methods for verifying C programs. In this paper, we

propose a new approach to this problem: a type system we

call RefinedC, which combines ownership types (for mod-

ular reasoning about shared state and concurrency) with

refinement types (for encoding precise invariants on C data

types and Hoare-style specifications for C functions).

RefinedC is both automated (requiring minimal user in-

tervention) and foundational (producing a proof of program

correctness in Coq), while at the same time handling a range

of low-level programming idioms such as pointer arithmetic.

In particular, following the approach of RustBelt, the sound-

ness of the RefinedC type system is justified semantically by

interpretation into the Coq-based Iris framework for higher-

order concurrent separation logic. However, the typing rules

of RefinedC are also designed to be encodable in a new “sep-

aration logic programming” language we call Lithium. By

restricting to a carefully chosen (yet expressive) fragment

of separation logic, Lithium supports predictable, automatic,

goal-directed proof search without backtracking. We demon-

strate the effectiveness of RefinedC on a range of represen-

tative examples of C code.CCS Concepts: • Theory of computation→ Separation

logic; Automated reasoning; Type theory.
Keywords: C programming language, separation logic, own-

ership types, refinement types, proof automation, Iris, Coq

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).PLDI ’21, June 20–25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454036

ACM Reference Format:Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan

Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: Au-

tomating the Foundational Verification of C Code with Refined

Ownership Types. In Proceedings of the 42nd ACM SIGPLAN Inter-

national Conference on Programming Language Design and Imple-

mentation (PLDI ’21), June 20–25, 2021, Virtual, Canada. ACM, New

York, NY, USA, 17 pages. https://doi.org/10.1145/3453483.3454036
1 IntroductionDespite numerous advances in programming language tech-

nology over the past several decades, a great deal of safety-

and security-critical systems software is still programmed

in C. The C language remains widely used in large part be-

cause it provides fine-grained control over management of

resources, which is indispensable to many systems programs.

However, this control comes at the steep cost of regularly

introducing serious and sometimes catastrophic bugs into

code. It has thus long been one of the grand challenges of

programming languages research to develop scalable for-

mal methods that can help programmers build C code that

is functionally correct, and verifiably so [2, 13, 15, 17, 19–

21, 25, 27, 29, 31, 33, 40, 53, 63, 69, 75, 82, 86].

Existing tools for formal verification of C programs come

in two varieties: automated or foundational.
On the one hand, automated tools like VeriFast [40], VCC

[17], and MatchC [86] use a variety of techniques (including

both off-the-shelf SMT solvers and bespoke separation-logic

solvers) to verify correctness of C programs with minimal

user intervention. With these tools, the user still needs to

write specifications and provide some annotations (e.g., loop

invariants) to aid the proof search, but the verification is

otherwise automatic. However, automated tools have a siz-

able trusted computing base: one must trust that the often-

sophisticated logic underpinning them is sound—and imple-

mented correctly—since the tools do not provide any form

of independently checkable proof.
On the other hand, foundational tools like VST [2, 10], as

well as major verification efforts like CertiKOS [32–34] and

1

65

Iron: Managing Obligations in

Higher-Order Concurrent Separation Logic

ALEŠ BIZJAK, Aarhus University, Denmark

DANIEL GRATZER, Aarhus University, Denmark

ROBBERT KREBBERS, Delft University of Technology, The Netherlands

LARS BIRKEDAL, Aarhus University, Denmark

Precise management of resources and the obligations they impose, such as the need to dispose of memory, close

locks, and release file handles, is hard—especially in the presence of concurrency, when some resources are

shared, and different threads operate on them concurrently. We present Iron, a novel higher-order concurrent

separation logic that allows for precise reasoning about resources that are transferable among dynamically

allocated threads. In particular, Iron can be used to show the correctness of challenging examples, where the

reclamation of memory is delegated to a forked-off thread. We show soundness of Iron by means of a model of

Iron, defined on top of the Iris base logic, and we use this model to prove that memory resources are accounted

for precisely and not leaked. We have formalized all of the developments in the Coq proof assistant.

CCS Concepts: • Theory of computation → Separation logic; Program verification; Programming logic;

Operational semantics;

Additional Key Words and Phrases: Separation logic, concurrency, resource management

ACM Reference Format:

Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: Managing Obligations in Higher-

Order Concurrent Separation Logic. Proc. ACM Program. Lang. 3, POPL, Article 65 (January 2019), 30 pages.

https://doi.org/10.1145/3290378

1 INTRODUCTION

To enable reasoning about resources in the presence of concurrency, a plethora of variants of con-

current separation logic (CSL) have been proposed, e.g., [da Rocha Pinto et al. 2014; Dinsdale-Young

et al. 2010; Feng 2009; Feng et al. 2007; Fu et al. 2010; Hobor et al. 2008; Jung et al. 2016, 2018, 2015;

Krebbers et al. 2017a; Mansky et al. 2017; Nanevski et al. 2014; O’Hearn 2007; Svendsen and Birkedal

2014; Turon et al. 2013; Vafeiadis and Parkinson 2007]. Despite their increased expressiveness and

increased sophistication to provide modular specifications of program modules, none of these

variants of separation logic can both:

(1) reason locally about unstructured fork-style concurrency, and,

(2) prove that resources are necessarily used, e.g., that a program module is obligated to free all

the memory it has allocated, or that it is obligated to released all the locks it has acquired.

Authors’ addresses: Aleš Bizjak, Aarhus University, abizjak@cs.au.dk; Daniel Gratzer, Aarhus University, gratzer@cs.au.dk;

Robbert Krebbers, Delft University of Technology, mail@robbertkrebbers.nl; Lars Birkedal, Aarhus University,

birkedal@cs.au.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART65

https://doi.org/10.1145/3290378

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 65. Publication date: January 2019.

64

A Separation Logic for Concurrent Randomized Programs

JOSEPH TASSAROTTI, Carnegie Mellon University, USA

ROBERT HARPER, Carnegie Mellon University, USA

We present Polaris, a concurrent separation logic with support for probabilistic reasoning. As part of our logic,

we extend the idea of coupling, which underlies recent work on probabilistic relational logics, to the setting of

programs with both probabilistic and non-deterministic choice. To demonstrate Polaris, we verify a variant of

a randomized concurrent counter algorithm and a two-level concurrent skip list. All of our results have been

mechanized in Coq.CCS Concepts: • Theory of computation → Separation logic; Program verification;

Additional Key Words and Phrases: separation logic, concurrency, probability

ACM Reference Format:Joseph Tassarotti and Robert Harper. 2019. A Separation Logic for Concurrent Randomized Programs. Proc.

ACM Program. Lang. 3, POPL, Article 64 (January 2019), 31 pages. https://doi.org/10.1145/3290377

1 INTRODUCTIONMany concurrent algorithms use randomization to reduce contention and coordination between

threads. Roughly speaking, these algorithms are designed so that if each thread makes a local

random choice, then on average the aggregate behavior of the whole system will have some good

property.
For example, probabilistic skip lists [Pugh 1990] are known to work well in the concurrent

setting [Fraser 2004; Herlihy et al. 2006], because threads can independently insert nodes into the

skip list without much synchronization. In contrast, traditional balanced tree structures are difficult

to implement in a scalable way because re-balancing operations may require locking access to large

parts of the tree.However, concurrent randomized algorithms are difficult to write and reason about. The use of

just concurrency or randomness alone makes it hard to establish the correctness of an algorithm.

For that reason, a number of program logics for reasoning about concurrent [Dinsdale-Young et al.

2013, 2010; Fu et al. 2010; Jones 1983; Jung et al. 2015; Nanevski et al. 2014; O’Hearn 2007; Vafeiadis

and Parkinson 2007] or randomized [Barthe et al. 2016, 2012; Kaminski et al. 2016; Morgan et al.

1996; Ramshaw 1979] programs have been developed.

But, to our knowledge, the only prior program logic designed for reasoning about programs that

are both concurrent and randomized is the recent probabilistic rely-guarantee calculus developed

by McIver et al. [2016], which extends Jones’s original rely-guarantee logic [Jones 1983] with

probabilistic constructs. However, this logic lacks many of the features of modern concurrency

logics. For example, starting with the work of Vafeiadis and Parkinson [2007] and Feng et al.

[2007], many recent concurrency logics combine rely-guarantee style reasoning with some form of

Authors’ addresses: Joseph Tassarotti, Computer Science Department, Carnegie Mellon University, USA, jtassaro@andrew.

cmu.edu; Robert Harper, Computer Science Department, Carnegie Mellon University, USA, rwh@cs.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART64https://doi.org/10.1145/3290377

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 64. Publication date: January 2019.

Verifying concurrent, crash-safe systems with Perennial

Tej Chajed
MIT CSAIL

Joseph Tassarotti

Boston College

M. Frans Kaashoek

MIT CSAIL

Nickolai Zeldovich

MIT CSAIL

Abstract

This paper introduces Perennial, a framework for verify-

ing concurrent, crash-safe systems. Perennial extends the

Iris concurrency framework with three techniques to enable

crash-safety reasoning: recovery leases, recovery helping,

and versioned memory. To ease development and deploy-

ment of applications, Perennial provides Goose, a subset of

Go and a translator from that subset to a model in Perennial

with support for reasoning about Go threads, data structures,

and file-system primitives. We implemented and verified a

crash-safe, concurrent mail server using Perennial and Goose

that achieves speedup on multiple cores. Both Perennial and

Iris use the Coq proof assistant, and the mail server and the

framework’s proofs are machine checked.

CCS Con
cepts • Software and its engineering → Soft-

ware verification; Concurrency control; Software fault toler-

ance.

Keyword
s Concurrency, Separation Logic, Crash Safety

1 Introduction

Making concurrent systems crash-safe is challenging be-

cause programmers must consider many interleavings of

threads in addition to the possibility of a crash at any time.

Testing interleavings and crash points is difficult, but formal

verification can prove that the system always follows its

specification, regardless of how threads interleave and even

if the system crashes.

Several existing verified storage systems address many

aspects of crash safety [5, 7, 10, 34], but they support only

sequential execution. There has also been great progress

in verifying concurrent systems [4, 13, 14, 20, 23, 41], but

none support crash safety reasoning. This paper develops

techniques for reasoning about crash safety in the presence

of concurrency and applies them to a verification system

called Iris [24].

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6873-5/19/10.

https://doi.org/10.1145/3341301.3359632

Multithreaded Application

Replicated disk library

Disk 1
Disk 2

rd_wri
te/rd_read

rd_wri
te/rd_read

write/read

write/read

Figure 1. A concurrent, replicated disk library that tolerates

a single disk failure using two physical disks. The library

provides linearizable reads and writes, and transparently

recovers from crashes.

To understand why reasoning about the combination of

crash safety and concurrency is challenging, consider the

following example: a concurrent disk replication library (Fig-

ure 1) that sends writes to two physical disks and handles

read failures on the first disk by falling back to the second.

The informal specification for the library is simple: the two

disks should behave as a single disk. That is, reading a block

should return the last value written to that block, and con-

current reads/writes should be linearizable [19].

One way to implement this specification is with a lock per

block, which is held during writes and reads. This guarantees

that concurrent writes and reads of the same disk block are

linearizable. Intuitively, such an implementation is correct

because a write is durably stored on both disks before the

lock is released.

The lock provides linearizability, but a crash that happens

in the middle of a write leaves the disks out of sync. There-

fore, the implementation must run a recovery procedure on

reboot. Because we want writes to be durable when they

finish, recovery must not revert or corrupt completed writes.

For example, it would be wrong for recovery to make the

disks in sync by zeroing them both. A correct recovery pro-

cedure copies values from the first disk to the second. This

is safe because it logically completes write operations that

crashed during execution and only overwrites old data.

To prove that this justification is correct and that the de-

veloper has considered all interleavings and crash points cor-

rectly, we need to capture this reasoning using precise rules

that lend themselves to concise, machine-checked proofs.

Formalizing this argument is challenging and beyond the

scope of previous concurrency verification tools.

1

10

Mechanized Logical Relations for Termination-Insensitive

Noninterference
SIMON ODDERSHEDE GREGERSEN, Aarhus University, Denmark

JOHAN BAY, Aarhus University, Demark
AMIN TIMANY, Aarhus University, Denmark

LARS BIRKEDAL, Aarhus University, Denmark
We present an expressive information-flow control type system with recursive types, existential types, label

polymorphism, and impredicative type polymorphism for a higher-order programming language with higher-

order state. We give a novel semantic model of this type system and show that well-typed programs satisfy

termination-insensitive noninterference. Our semantic approach supports compositional integration of syn-

tactically well-typed and syntactically ill-typed—but semantically sound—components, which we demonstrate

through several interesting examples. We define our model using logical relations on top of the Iris program

logic framework. To capture termination-insensitivity, we develop a novel language-agnostic theory of Modal

Weakest Preconditions. We formalize all of our theory and examples in the Coq proof assistant.

CCS Concepts: • Security and privacy→ Logic and verification; Formal security models; • Theory of

computation→ Separation logic; Program verification.

Additional Key Words and Phrases: Logical Relations, Information-Flow Control, Program Logics, Iris

ACM Reference Format:Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. 2021. Mechanized Logical Relations

for Termination-Insensitive Noninterference. Proc. ACM Program. Lang. 5, POPL, Article 10 (January 2021),

29 pages. https://doi.org/10.1145/34342911 INTRODUCTIONSystems for information-flow control put restrictions on how a program’s outputs are related to its

inputs. Such systems establish various notions of noninterference [Goguen and Meseguer 1982],

conveying that observable aspects of the program’s behavior is independent of its sensitive inputs.

Information-flow control enforcement is often specified as a static type system (e.g., Abadi et al.

[1999]; Arden and Myers [2016]; Heintze and Riecke [1998]; Lourenço and Caires [2015]; Myers

[1999]; Simonet [2003b]) or via an encoding into an existing type system (e.g., Algehed and Russo

[2017]; Gregersen et al. [2019]; Li and Zdancewic [2006]; Pottier and Simonet [2003]; Russo [2015];

Russo et al. [2008]; Vassena et al. [2018]). Modern programming languages have rich type systems

featuring, e.g., higher types, reference types, and abstract types, which are all essential for modern

software engineering practice and for implementing reusable software components. Naturally,

modern practical information-flow secure languages have to meet the same demands, but as the

complexity of the type system increases, so does the burden of proving the type system sound.

Authors’ addresses: Simon Oddershede Gregersen, Aarhus University, Denmark, gregersen@cs.au.dk; Johan Bay, Aarhus

University, Demark, bay@cs.au.dk; Amin Timany, Aarhus University, Denmark, timany@cs.au.dk; Lars Birkedal, Aarhus

University, Denmark, birkedal@cs.au.dk.Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART10https://doi.org/10.1145/3434291

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 10. Publication date: January 2021.

6

Efficient and Provable Local Capability Revocation using

Uninitialized Capabilities

AÏNA LINN GEORGES, Aarhus University, Denmark

ARMAËL GUÉNEAU, Aarhus University, Denmark

THOMAS VAN STRYDONCK, KU Leuven, Belgium

AMIN TIMANY, Aarhus University, Denmark

ALIX TRIEU, Aarhus University, Denmark

SANDER HUYGHEBAERT, Vrije Universiteit Brussel, Belgium

DOMINIQUE DEVRIESE, Vrije Universiteit Brussel, Belgium

LARS BIRKEDAL, Aarhus University, Denmark

Capability machines are a special form of CPUs that offer fine-grained privilege separation using a form of

authority-carrying values known as capabilities. The CHERI capability machine offers local capabilities, which

could be used as a cheap but restricted form of capability revocation. Unfortunately, local capability revocation

is unrealistic in practice because large amounts of stack memory need to be cleared as a security precaution.

In this paper, we address this shortcoming by introducing uninitialized capabilities: a new form of capabilities

that represent read/write authority to a block of memory without exposing the memory’s initial contents. We

provide a mechanically verified program logic for reasoning about programs on a capability machine with the

new feature and we formalize and prove capability safety in the form of a universal contract for untrusted

code. We use uninitialized capabilities for making a previously-proposed secure calling convention efficient

and prove its security using the program logic. Finally, we report on a proof-of-concept implementation of

uninitialized capabilities on the CHERI capability machine.

CCS Concepts: • Security and privacy→ Logic and verification; Formal security models; • Theory of

computation→ Program verification; Program specifications.

Additional Key Words and Phrases: capability machines, local capabilities, uninitialized capabilities, capability

safety, universal contracts, program logic, capability revocation, CHERI

ACM Reference Format:

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert,

Dominique Devriese, and Lars Birkedal. 2021. Efficient and Provable Local Capability Revocation using

Uninitialized Capabilities. Proc. ACM Program. Lang. 5, POPL, Article 6 (January 2021), 30 pages. https:

//doi.org/10.1145/3434287

1 INTRODUCTION

Capability machines are a type of CPUs with support for fine-grained privilege separation, dating

back to the 1960s [Dennis and Van Horn 1966; Levy 1984; Watson et al. 2019]. In this paper, we

Authors’ addresses: Aïna Linn Georges, Aarhus University, Denmark, ageorges@cs.au.dk; Armaël Guéneau, Aarhus

University, Denmark, armael@cs.au.dk; Thomas Van Strydonck, KU Leuven, Belgium, thomas.vanstrydonck@cs.kuleuven.

be; Amin Timany, Aarhus University, Denmark, timany@cs.au.dk; Alix Trieu, Aarhus University, Denmark, alix.trieu@cs.

au.dk; Sander Huyghebaert, Vrije Universiteit Brussel, Belgium, sander.huyghebaert@vub.be; Dominique Devriese, Vrije

Universiteit Brussel, Belgium, dominique.devriese@vub.be; Lars Birkedal, Aarhus University, Denmark, birkedal@cs.au.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART6

https://doi.org/10.1145/3434287

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 6. Publication date: January 2021.

C
o
ns
ist

en
t * Complete

*
W
e
llD
o
cum

ented*Easy
to

Re
u
se
*

*
Evaluated

*
P
O
P
L
*

Arti
fact

*
A
E
C

Iris: Monoids and Invariants as an

Orthogonal Basis for Concurrent Reasoning

Ralf Jung
MPI-SWS &Saarland Universityjung@mpi-sws.org

David Swasey
MPI-SWSswasey@mpi-sws.org

Filip SieczkowskiAarhus Universityfilips@cs.au.dk

Kasper SvendsenAarhus Universityksvendsen@cs.au.dk

Aaron TuronMozilla Researchaturon@mozilla.com

Lars BirkedalAarhus Universitybirkedal@cs.au.dk

Derek Dreyer
MPI-SWSdreyer@mpi-sws.org

Abstract
We present Iris, a concurrent separation logic with a simple premise:

monoids and invariants are all you need. Partial commutative

monoids enable us to express—and invariants enable us to enforce—

user-defined protocols on shared state, which are at the conceptual

core of most recent program logics for concurrency. Furthermore,

through a novel extension of the concept of a view shift, Iris supports

the encoding of logically atomic specifications, i.e., Hoare-style

specs that permit the client of an operation to treat the operation

essentially as if it were atomic, even if it is not.
Categories and Subject Descriptors D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory; D.3.3 [Programming

Languages]: Language Constructs and Features; F.3.1 [Logics and

Meanings of Programs]: Specifying and Verifying and Reasoning

about Programs
Keywords Separation logic, fine-grained concurrency, atomicity,

partial commutative monoids, invariants, higher-order logic, compo-

sitional verification.
1. IntroductionConcurrency is fundamentally about shared state. This is true not

only for shared-memory concurrency, where the state takes the form

of a “heap” that threads may write to and read from, but also for

message-passing concurrency, where the state takes the form of a

“network” that threads may send to and receive from (or a sequence

of “events” on which threads may synchronize). Thus, to scalably

verify concurrent programs of any stripe, we need compositional

methods for reasoning about shared state.

This goal has sparked a long line of work, especially in recent

years, during which a synthesis of rely-guarantee reasoning [21] and

separation logic [31, 28] has led to a series of increasingly advanced

program logics for concurrency: RGSep [37], SAGL [13], LRG [12],

CAP [10], HLRG [15], CaReSL [34], iCAP [33], FCSL [27],

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

POPL ’15, January 15–17, 2015, Mumbai, India.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3300-9/15/01. . . $15.00.

http://dx.doi.org/10.1145/2676726.2676980

TaDA [8], and others. In this paper, we present a logic called Iris that

explains some of the complexities of these prior separation logics in

terms of a simpler unifying foundation, while also supporting some

new and powerful reasoning principles for concurrency.

Before we get to Iris, however, let us begin with a brief overview

of some key problems that arise in reasoning compositionally about

shared state, and how prior approaches have dealt with them.

1.1 Invariants and their limitations
The canonical model of concurrency is sequential consistency [23]:

threads take turns interacting with the shared state (reading/writing,

sending/receiving), with each turn lasting for one step of computa-

tion.1 Although the semantics of sequentially consistent (SC) con-

currency is simple to define, that does not mean it is easy to reason

about. In particular, the key question is how to do thread-local

reasoning—that is, verifying one thread at a time—even though

other threads may interfere with (i.e., mutate) the shared state in

between each step of computation in the thread we are verifying.

The invariant rule. The simplest (and oldest) way in which

concurrent program logics account for such interference is via

invariants [5]. An invariant is a property that holds of some piece of

shared state at all times: each thread accessing the state may assume

the invariant holds before each step of its computation, but it must

also ensure that it continues to hold after each step.

Formally, in concurrent separation logics, the invariant rule looks

something like the following (omitting some important details that

we explain later in §4):
{R ∗ P } e {R ∗Q} e physically atomicR ` {P } e {Q}

Here, the assertion R states the knowledge that there exists an

invariant R governing some piece of shared state. Given this

knowledge, the rule tells us that e may gain (exclusive) control of

the shared state satisfying R, so long as it ensures that R continues

to hold of it when it is finished executing. Note the crucial side

condition that e be physically atomic, meaning that it takes exactly

one step of computation. If e were not physically atomic, then

another thread might access the shared state governed by R during

e’s execution, in which case it would not be safe for the rule to grant

e exclusive control of the shared state throughout its execution.

1 There is much recent work on weaker models of concurrency, which are in

many ways more realistic, but in this paper we focus on SC concurrency.

1

Transfinite Iris: Resolving an Existential Dilemma of

Step-Indexed Separation Logic

Simon Spies

MPI-SWS and

Saarland University

Germany

spies@mpi-sws.org

Lennard Gäher

MPI-SWS and

Saarland University

Germany

gaeher@mpi-sws.org

Daniel Gratzer

Aarhus University

Denmark

gratzer@cs.au.dk

Joseph Tassarotti

Boston College

USA

tassarot@bc.edu

Robbert Krebbers

Radboud University Nijmegen

The Netherlands

mail@robbertkrebbers.nl

Derek Dreyer
MPI-SWS

Germany

dreyer@mpi-sws.org

Lars Birkedal

Aarhus University

Denmark

birkedal@cs.au.dk

Abstract

Step-indexed separation logic has proven to be a powerful

tool for modular reasoning about higher-order stateful pro-

grams. However, it has only been used to reason about safety

properties, never liveness properties. In this paper, we ob-

serve that the inability of step-indexed separation logic to

support liveness properties stems fundamentally from its

failure to validate the existential property, connecting the

meaning of existential quantification inside and outside the

logic. We show how to validate the existential propertyÐand

thus enable liveness reasoningÐby moving from finite step-

indices (natural numbers) to transfinite step-indices (ordi-

nals). Concretely, we transform the Coq-based step-indexed

logic Iris to Transfinite Iris, and demonstrate its effective-

ness in proving termination and termination-preserving re-

finement for higher-order stateful programs.

CCS Con
cepts: • Theory of computation → Separation

logic; Hoare logic.

Keyword
s: Separation logic, Iris, liveness properties, step-

indexing, transfinite, ordinals

ACM Reference Format:

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Rob-

bert Krebbers, Derek Dreyer, and Lars Birkedal. 2021. Transfinite

Iris: Resolving an Existential Dilemma of Step-Indexed Separation

Logic. In Proceedings of the 42nd ACM SIGPLAN International Con-

ference on Programming Language Design and Implementation (PLDI

’21), June 20ś25, 2021, Virtual, Canada. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3453483.3454031

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.

https://doi.org/10.1145/3453483.3454031

1 Introduction

In the past decade, separation logics [51] have emerged as

an essential tool for verifying complex stateful programs.

Of particular note are the so-called step-indexed separation

logics, including VST [5, 15, 31], HOCAP [55], iCAP [54],

and Iris [35ś37, 41]. The distinguishing feature of these step-

indexed separation logics is their ability to reason modularly

about programsÐand their ability to build semantic models

of programming languagesÐwith łcyclicž features like recur-

sive types and higher-order state (pointers to higher-order

objects). Step-indexing has proven indispensable in a variety

of major verification efforts, in languages ranging from C [5]

to Go [16] to OCaml [48] to Rust [20, 33, 34] to Scala [29].

Unfortunately, all the existing step-indexed separation log-

ics suffer from a shared Achilles heel: they support reasoning

about safety properties (łbad things never happenž), but not

liveness properties (łgood things eventually happenž). There

is a simple intuitive explanation for this limitation: the whole

idea of step-indexing is to give semantics to a program based

only on its finitary behavior (i.e., the finite prefixes of its

traces), and safety properties are precisely those properties

of a program that can be determined from examining its

finitary behavior. In contrast, determining whether a pro-

gram satisfies a liveness property fundamentally requires

examination of its infinite traces.

Nevertheless, as we will show in this paper, it is in fact

possible to equip step-indexed separation logics with sup-

port for liveness reasoning. Specifically, we will show how

to transform the step-indexed separation logic Iris into a

new logic Transfinite Iris that (unlike Iris) supports the

verification of two essential liveness propertiesÐtermination

and termination-preserving refinementÐin the presence of

higher-order state. In order to do so, we need to revisit the

most basic foundations of step-indexed separation logics,

because it turns out that the root of the problem concerns

the very notion of what a łstep-indexž is. But before we get

there, let us begin with a concrete example to illustrate the

kind of properties we are interested in proving.

80

This work is licensed under a Creative Commons Attribution International 4.0 License.

ZU064-05-FPR paper 2 October 2018 10:44

Under consideration for publication in J. Functional Programming

1Iris from the ground up
A modular foundation for higher-order concurrent separation logicRALF JUNGMPI-SWS, Germany(e-mail: jung@mpi-sws.org)ROBBERT KREBBERS

Delft University of Technology, The Netherlands

(e-mail: mail@robbertkrebbers.nl)JACQUES-HENRI JOURDANMPI-SWS, Germany
(e-mail: jjourdan@mpi-sws.org)ALEŠ BIZJAKAarhus University, Denmark
(e-mail: abizjak@cs.au.dk)LARS BIRKEDALAarhus University, Denmark

(e-mail: birkedal@cs.au.dk)DEREK DREYERMPI-SWS, Germany(e-mail: dreyer@mpi-sws.org)

Abstract
Iris is a framework for higher-order concurrent separation logic, which has been implemented in the

Coq proof assistant and deployed very effectively in a wide variety of verification projects. Iris was

designed with the express goal of simplifying and consolidating the foundations of modern separation

logics, but it has evolved over time, and the design and semantic foundations of Iris itself have yet

to be fully written down and explained together properly in one place. Here, we attempt to fill this

gap, presenting a reasonably complete picture of the latest version of Iris (version 3.1), from first

principles and in one coherent narrative.

1 Introduction

Iris is a framework for higher-order concurrent separation logic, implemented in the Coq

proof assistant, which we and a growing network of collaborators have been developing

actively since 2014. It is the only verification tool proposed so far that supports

• foundational machine-checked proofs of

• deep correctness properties for

Example: RustBelt

step-indexing for
recursive types
separation logic for
ownership types

4

Step-Indexing: A Double Edged Sword

Step-indexing enables recursive reasoning
Löb induction, higher-order ghost state, . . .

but introduces irritating step-indexing artifacts
the later modality . P

.

5

Running Example: Impredicative Invariants

Opening Invariants (from Iris 1.0)

{P ∗R} e {Q ∗R} e atomic
R ` {P} e {Q}

because invariants in Iris are step-indexed.

5

Running Example: Impredicative Invariants

Actually . . .

{P ∗ .R} e {v. Q ∗ .R}E\N e atomic N ⊆ E

R
N ` {P} e {v. Q}E

because invariants in Iris are step-indexed.

later modality masks

6

The Akward Role of the Later Modality

The later modality prevents inconsistent proofs
. R is sound, R not necessarily

,

but in proofs we worry mostly about removing it
we want R, not . R

.

7

Example: A Typical Iris Proof

...
` { (∃n : N. ` 7→ n)} !` {v.v ∈ N ∗ .(∃n : N. ` 7→ n)}
` {.(∃n : N. ` 7→ n)} !` {v.v ∈ N ∗ .(∃n : N. ` 7→ n)}

∃n : N. ` 7→ n ` {True} !` {v.v ∈ N}

7

Example: A Typical Iris Proof

...
` { (∃n : N. ` 7→ n)} !` {v.v ∈ N ∗ .(∃n : N. ` 7→ n)}

` {.(∃n : N. ` 7→ n)} !` {v.v ∈ N ∗ .(∃n : N. ` 7→ n)}
∃n : N. ` 7→ n ` {True} !` {v.v ∈ N}

7

Example: A Typical Iris Proof

...
` { (∃n : N. ` 7→ n)} !` {v.v ∈ N ∗ .(∃n : N. ` 7→ n)}
` {.(∃n : N. ` 7→ n)} !` {v.v ∈ N ∗ .(∃n : N. ` 7→ n)}

∃n : N. ` 7→ n ` {True} !` {v.v ∈ N}

no more later

8

We have to solve . . .

The Later Elimination Problem
We have . R in our context, but we need R to proceed.

Existing Options

Timeless Propositions

Commuting Rules

Program Steps

8

We have to solve . . .

The Later Elimination Problem
We have . R in our context, but we need R to proceed.

Existing Options
Timeless Propositions

{P ∗R} e {v. Q} timeless(R)
{P ∗ . R} e {v. Q}

timeless(` 7→ v)

Commuting Rules

Program Steps

8

We have to solve . . .

The Later Elimination Problem
We have . R in our context, but we need R to proceed.

Existing Options

Timeless Propositions

Commuting Rules

.(P ∗Q) ` . P ∗ . Q .(∃x. P) ` ∃x. . P . . .

Program Steps

8

We have to solve . . .

The Later Elimination Problem
We have . R in our context, but we need R to proceed.

Existing Options
Timeless Propositions

Commuting Rules

Program Steps
{R} e′ {v. Q} e→pure e′

{. R} e {v. Q}
· · ·

9

Limitations of the Existing Options

Existing options apply to most invariants

R = ∃n : N. ` 7→ n where ∃n : N. ` 7→ n

timeless

But they are no silver bullet. They do not apply to

R = ∃n : N. ` 7→ n where ∃n : N. ` 7→ n

not timeless

9

Limitations of the Existing Options

Existing options apply to most invariants

R = ∃n : N. ` 7→ n where ∃n : N. ` 7→ n

timeless

But they are no silver bullet. They do not apply to

R = ∃n : N. ` 7→ n where ∃n : N. ` 7→ n

not timeless

10

We are stuck . . .

`
{
. (∃n : N. ` 7→ n)

}
!`

{
v.v ∈ N ∗ . (∃n : N. ` 7→ n)

}
∃n : N. ` 7→ n ` {True} !` {v.v ∈ N}

invariant guarded by a later

11

So what then?

“ Help . . .

11

So what then?

“ Help . . .

Have you tried these non-local refactorings of your proof
flattening your invariant hierarchy

...
or considered giving up?

12

Developing a Fourth Option

Step-Indexed
Logical
Relations

Separation
Logic

How about using this pillar to
develop another option?

13

Our Contribution: Later Credits

Later credits turn

the right to eliminate a later
transform . R into R

into an

ownable resource
a later credit £1

, which is subject to

traditional separation logic reasoning
passing around, framing, sharing via invariants

.

14

Later Credits in a Nutshell

{R} e′ {v. Q} e→pure e′

{. R} e {v. Q}

becomes

{R ∗£1} e′ {v. Q} e→pure e′

{R} e {v. Q}
{R} e {v. Q}

{£1 ∗ . R} e {v. Q}

15

Novelty: Prepaid Reasoning

{ ∃n : N. ` 7→ n } f(41 + 1); !` {v.v ∈ N}

we obtain £1 we spend £1

16

Prepaid Reasoning in Action

{ (∃n : N. ` 7→ n) } !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }
{. (∃n : N. ` 7→ n) ∗£1} !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }

{ ∃n : N. ` 7→ n ∗£1} !` {v.v ∈ N}

{ ∃n : N. ` 7→ n ∗£1} f(42); !` {v.v ∈ N}

{ ∃n : N. ` 7→ n } f(41 + 1); !` {v.v ∈ N}

16

Prepaid Reasoning in Action

{ (∃n : N. ` 7→ n) } !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }
{. (∃n : N. ` 7→ n) ∗£1} !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }

{ ∃n : N. ` 7→ n ∗£1} !` {v.v ∈ N}

{ ∃n : N. ` 7→ n ∗£1} f(42); !` {v.v ∈ N}

{ ∃n : N. ` 7→ n } f(41 + 1); !` {v.v ∈ N}

16

Prepaid Reasoning in Action

{ (∃n : N. ` 7→ n) } !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }
{. (∃n : N. ` 7→ n) ∗£1} !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }

{ ∃n : N. ` 7→ n ∗£1} !` {v.v ∈ N}

{ ∃n : N. ` 7→ n ∗£1} f(42); !` {v.v ∈ N}

{ ∃n : N. ` 7→ n } f(41 + 1); !` {v.v ∈ N}

16

Prepaid Reasoning in Action

{ (∃n : N. ` 7→ n) } !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }
{. (∃n : N. ` 7→ n) ∗£1} !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }

{ ∃n : N. ` 7→ n ∗£1} !` {v.v ∈ N}

{ ∃n : N. ` 7→ n ∗£1} f(42); !` {v.v ∈ N}

{ ∃n : N. ` 7→ n } f(41 + 1); !` {v.v ∈ N}

16

Prepaid Reasoning in Action

{ (∃n : N. ` 7→ n) } !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }

{. (∃n : N. ` 7→ n) ∗£1} !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }

{ ∃n : N. ` 7→ n ∗£1} !` {v.v ∈ N}

{ ∃n : N. ` 7→ n ∗£1} f(42); !` {v.v ∈ N}

{ ∃n : N. ` 7→ n } f(41 + 1); !` {v.v ∈ N}

16

Prepaid Reasoning in Action

{ (∃n : N. ` 7→ n) } !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }

{. (∃n : N. ` 7→ n) ∗£1} !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }

{ ∃n : N. ` 7→ n ∗£1} !` {v.v ∈ N}

{ ∃n : N. ` 7→ n ∗£1} f(42); !` {v.v ∈ N}

{ ∃n : N. ` 7→ n } f(41 + 1); !` {v.v ∈ N}

we spend our credit

16

Prepaid Reasoning in Action

{ (∃n : N. ` 7→ n) } !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }
{. (∃n : N. ` 7→ n) ∗£1} !` {v.v ∈ N ∗ . (∃n : N. ` 7→ n) }

{ ∃n : N. ` 7→ n ∗£1} !` {v.v ∈ N}

{ ∃n : N. ` 7→ n ∗£1} f(42); !` {v.v ∈ N}

{ ∃n : N. ` 7→ n } f(41 + 1); !` {v.v ∈ N}

Application: Prepaid Invariants
sharing later credits via invariants

Application: Logical Atomicity
cleaning up existing proofs

Theory and Soundness
the intuition on a napkin

£n

18

Application: Prepaid Invariants
sharing later credits via invariants

Application: Logical Atomicity
cleaning up existing proofs

Theory and Soundness
the intuition on a napkin

£n

19

Do we really need a later?

{P ∗ R} e {v. Q ∗R} e atomic
R ` {P} e {v. Q}

“ That cannot be sound, can it?

no later

20

Later Credits in Invariants

Idea: We prepay the later elimination
R pre , R ∗£1

such that we get to R.

{R ∗P} e {v. Q ∗R ∗£1} e atomic
R pre ` {P} e {v. Q}

direct access

20

Later Credits in Invariants

Idea: We prepay the later elimination
R pre , R ∗£1

such that we get to R.

{R ∗P} e {v. Q ∗R ∗£1} e atomic
R pre ` {P} e {v. Q}

direct access

generated by the
next step

20

Later Credits in Invariants

Idea: We prepay the later elimination
R pre , R ∗£1

such that we get direct access to R.

{R ∗P} e {v. Q ∗R ∗£1}
spend credit{£1 ∗ .(R ∗P)} e {v. Q ∗R ∗£1}
timelessness of £n{. £1 ∗ .(R ∗P)} e {v. Q ∗R ∗£1}
later shu�ing{P ∗ .(R ∗£1)} e {v. Q ∗ .(R ∗£1)}
open invariant

R pre ` {P} e {v. Q}

20

Later Credits in Invariants

Idea: We prepay the later elimination
R pre , R ∗£1

such that we get direct access to R.

{R ∗P} e {v. Q ∗R ∗£1}
spend credit{£1 ∗ .(R ∗P)} e {v. Q ∗R ∗£1}
timelessness of £n{. £1 ∗ .(R ∗P)} e {v. Q ∗R ∗£1}
later shu�ing{P ∗ .(R ∗£1)} e {v. Q ∗ .(R ∗£1)}
open invariant

R pre ` {P} e {v. Q}

20

Later Credits in Invariants

Idea: We prepay the later elimination
R pre , R ∗£1

such that we get direct access to R.

{R ∗P} e {v. Q ∗R ∗£1}
spend credit{£1 ∗ .(R ∗P)} e {v. Q ∗R ∗£1}
timelessness of £n{. £1 ∗ .(R ∗P)} e {v. Q ∗R ∗£1}
later shu�ing{P ∗ .(R ∗£1)} e {v. Q ∗ .(R ∗£1)}
open invariant

R pre ` {P} e {v. Q}

20

Later Credits in Invariants

Idea: We prepay the later elimination
R pre , R ∗£1

such that we get direct access to R.

{R ∗P} e {v. Q ∗R ∗£1}
spend credit{£1 ∗ .(R ∗P)} e {v. Q ∗R ∗£1}
timelessness of £n{. £1 ∗ .(R ∗P)} e {v. Q ∗R ∗£1}
later shu�ing{P ∗ .(R ∗£1)} e {v. Q ∗ .(R ∗£1)}
open invariant

R pre ` {P} e {v. Q}

21

Prepaid Invariants

In fact, we obtain

{P ∗ R} e {v. Q ∗R} e atomic
R pre ` {P} e {v. Q}

Disclaimer 1. To obtain this rule, we need to generate more than one credit per step. To do
so, we modify Jourdan’s multiple-laters-per-step extension of Iris.

Disclaimer 2. The paradox is of course still true. Even with later credits, we cannot open
invariants without a guarding later around updates.

no later

22

Application: Prepaid Invariants
sharing later credits via invariants

Application: Logical Atomicity
cleaning up existing proofs

Theory and Soundness
the intuition on a napkin

£n

23

Logical Atomicity . . .

. . . in a nutshell:

{P ∗R} e {v. Q ∗R} e atomic
R ` {P} e {v. Q}

relaxed to “logically atomic” instructions

24

The later troubles . . .

. . . arise for data structures with helping.

helpee
(e.g., push)

helper
(e.g., pop)

Thread A Thread B“please help”

“done”

Complication. The interaction physically happens through
memory, and logically happens through invariants.

24

The later troubles . . .

. . . arise for data structures with helping.

helpee
(e.g., push)

helper
(e.g., pop)

Thread A Thread B“please help”

“done”

Complication. The interaction physically happens through
memory, and logically happens through invariants.

25

How does it work?

Ask Ralf!

What is the right specification?

rec i
nc(x) = let v = !x;

if CA
S(x, v, v + 1) then v

else
inc(x)

-

λx. FAA(x, 1)

Compare-and-swap

Fetch-and-add

Common approach:

• Use contextual refinement as spec

• Use linearizability to prove it

2

What is the right specification?
rec inc(x) = let v = !x;

if CAS(x, v, v + 1) then velse inc(x)

-

λx. FAA(x, 1)

Compare-and-swap Fetch-and-add

Common approach:• Use contextual refinement as spec
• Use linearizability to prove it

2

Logical Atomicity in Iris:

the Good, the Bad, and the Ugly

Ralf Jung

MPI-SWS, Germany

Iris Workshop, October 2019
1

Logical Atomicity in Iris:the Good, the Bad, and the Ugly
Ralf Jung

MPI-SWS, Germany
Iris Workshop, October 2019

1

26

The Main Takeaway

Later credits remove the ugly parts of
laterable

logical atomicity.

without later credits

Helping occurs when one threads’

linearization point is executed by

another thread.

. . . ∗ AU ∗ . . .

.AU is useless!

24

Helping occurs when one threads’

linearization point is executed by

another thread.

. . . ∗ AU ∗ . . .

.AU is useless!

24

Logical Atomicity,
v1: laters
(the Ugly)

23

with later credits

helpee helper

£1

help

27

Application: Prepaid Invariants
sharing later credits via invariants

Application: Logical Atomicity
cleaning up existing proofs

Theory and Soundness
the intuition on a napkin

£n

28

The Later Credit Mechanism

A resource £n

£(n + m) a` £n ∗£m timeless(£n)

an update |VleP

P ` |VleP |VleP ∗(P −∗ |VleQ) ` |VleQ

a monad

£1 ∗ . P ` |VleP

and Hoare rules
{P} e {v. Q}
{|VleP} e {v. Q}

{P ∗£1} e′ {v. Q} e→pure e′

{P} e {v. Q}

29

Soundness

Observation. Adequacy in Iris is only concerned with the
amortized number of later eliminations.

e0without credits e1 · · · en

e0with credits e1 · · · en

. elim. . elim. . elim.

£1 £1 £1
at most n later eliminations

30

Our Contribution: Later Credits

Later credits turn

the right to eliminate a later
transform . R into R

into an

ownable resource
a later credit £1

, which is subject to

traditional separation logic reasoning
passing around, framing, sharing via invariants

.

31

Using Later Credits

Step 1. Replace |VP with |VleP in your definitions.1

Step 2. Profit
3 in program verification proofs
3 in logical relation constructions
3 in ghost theories
3 in logical atomicity proofs

1Mostly backwards compatible. Missing interaction rules with plain propositions.

32

Later Credits vs. Time Receipts

Time receipts track the number of laters per step.

e0 e1 · · · en
. .2 .n

Later credits control where laters are.

£1 ∗ . P ` |VleP and
{R} e {v. Q}

{£1 ∗ . R} e {v. Q}

33

Later Credits + Time Receipts

We add time receipts ©n

{P ∗£1 ∗©1} e2 {v. Q} e1 →pure e2

{P} e1 {v. Q}
{P} e {v. Q} e /∈Val
{P ∗©n} e {v. Q ∗£n ∗©n}

by integrating with Jourdan’s multiple-laters-per-step extension. The
definition of prepaid invariants becomes R pre , R ∗£1 ∗©1 , satisfying

R pre ` {P} e {v. Q}
{. R ∗£1 ∗©1 ∗P} e {v. Q}

{P ∗R} e {v. Q ∗R} e atomic
R pre ` {P} e {v. Q}

34

The Later Elimination Update

|VleP , ∀n. £•n −∗ |V((£•n ∗ P) ∨ (∃m < n. £•m ∗ . |VleP))

where £n , ◦n γlc and £•n , •n γlc from Auth(N, +).

add a later to your goal

credit decrease

choose a path

ghost state update

