
Joint work with

Aïna Linn Georges, Maxime Legoupil, Jean Pichon-Pharabod, Lars Birkedal Aarhus University
Conrad Watt Cambridge University
Philippa Gardner Imperial College London

Iris-Wasm: A Higher-Order Mechanised
Program Logic For WebAssembly
Xiaojia Rao
Imperial College London

1

WebAssembly (Wasm)
What is WebAssembly?

• A modern bytecode language supported by all major browsers

• An efficient compilation target for low-level languages (e.g. C/C++)

• Specified through formal semantics from the start

• Code distributed in modules — the unit of compilation

2

WebAssembly (Wasm)
Related Previous Work

• Wasm formal semantics (Haas et al, PLDI 2017)

• Isabelle mechanisation (Watt, CPP 2018)

• First-order encapsulated Wasm Program Logic (Watt et al, ECOOP 2018)

• Wasm 1.0, official W3C-Recommendation (2019)

• Isabelle and Coq mechanisation of Wasm 1.0 (Watt et al, FM 2021)

3

Iris-Wasm: Goals

• A mechanised program logic of Wasm using Iris

• Based on the previous faithful representation of the Wasm semantics

• Robust safety examples via logical relation defined on the language…

• But unknown code is only a thing where multiple modules are involved

• A lightweight host language that supports module instantiation

• Also enables building modular specification for Wasm modules

4

• Program Logic for Native WebAssembly

• Modules and Host Language

5

Talk Overview

Program Logic for Native WebAssembly
WebAssembly Overview

• Stack-based language

• Instruction stack and value stack

• Small-step operational semantics

• Syntactic type-check (validation) before execution

6

Program Logic for Native WebAssembly
Basic Wasm Definitions

7

Value v
32/64-bit integers and floats

Value type t ::= i32 | i64 | f32 | f64

Function type ft ::= [t*] -> [t*]

Each instruction has a static function
type for validationInstruction

e ::= t.const v | t.add |

block ft e* | loop ft e* | br n |

call n | call_indirect n | return |

load … | store … | …

Iris val iris_v ::= v*

Iris expr iris_e ::= e*

(Trivial) Embedding in Iris

Program Logic for Native WebAssembly
Example: Numeric Instructions

8

(i32.const 2)

(i32.const 10)

(i32.const 30)

(i32.add)

(i32.add)

(i32.const 2)

(i32.const 40)

(i32.add)
(i32.const 42)

• Following the official specification, value stack is not implemented explicitly

• Leading list of constants is interpreted as the value stack

• A very simple wp rule demonstrating the semantic behaviour of addition:

Program Logic for Native WebAssembly
Example: Control Flow

9

(Block …

 [(Block …

 [(i32.const 2)

 (i32.const 40)

 (i32.add)

 (br 0)]

)]

)

(Label … []

 [(Label … []

 [(i32.const 2)

 (i32.const 40)

 (i32.add)

 (br 0)]

)]

)

(Label … []

 [(i32.const 42)]

)Intermediate steps omitted

Continuation of a label: Instructions to execute

if targeted by a br (empty for blocks)

(Label … []

 [(Label … []

 [(i32.const 42)

 (br 0)]

)]

)

• Blocks reduce to Label instructions (Labels are somewhat similar to evaluation contexts)

• br breaks out of the corresponding Label, taking (some) values out of Label, and pushes the
continuation of Label to the instruction stack and continue from there

Program Logic for Native WebAssembly
Example: Control Flow

10

(Block …

 [(Block …

 [(i32.const 2)

 (i32.const 40)

 (i32.add)

 (br 1)]

)]

)

(Label … []

 [(Label … []

 [(i32.const 2)

 (i32.const 40)

 (i32.add)

 (br 1)]

)]

)

(i32.const 42)

Intermediate steps omitted

(Label … []

 [(Label … []

 [(i32.const 42)

 (br 1)]

)]

)

Program Logic for Native WebAssembly
Example: Control Flow

• Cannot treat labels as simple evaluation contexts due to br

• Forget about this idea of context and treat labels as normal expressions?

• Hard to craft the traditional bind rules for labels

• Awkward to apply the resulting wp rules to actual programs

• Solution:

• Consider a group of nested labels as an evaluation context

• Extend the definition of values to include stuck br

11

Program Logic for Native WebAssembly
Example: Control Flow

• lh describes a (nested) label context surrounding a hole

• In the brV constructor of iris_v, lh is required to be shallow enough for (br n) to get stuck

12

Iris val iris_v ::= immV v* | brV n lh | …

Label hole context lh ::= LH_base v* e* |
LH_rec v* e*_cont lh e*_exec

lh := LH_rec [] []

 (LH_rec [] []

 (LH_base [i32.const 42] [])

 [])

 []

le := (Label … []

 [(Label … []

 [(i32.const 42)

 (br 1)]

)]

)

lh_fill lh (br 1) = le = of_val (brV 1 lh)

• Filling a lh context with an expression:

Program Logic for Native WebAssembly
Example: Control Flow

13

• A number of rules proved to handle context manipulation

• Together with a rule for br within an appropriate context,
this allowed the spec of the previous example to be proved

• An auxiliary notation of context-wp is defined for dealing with contexts more easily

le := (Label … []

 [(Label … []

 [(i32.const 42)

 (br 1)]

)]

)

(i32.const 42)

(Label … []

 [(Label … []

 [(i32.const 2)

 (i32.const 40)

 (i32.add)

 (br 1)]

)]

)

Program Logic for Native WebAssembly
Example: Wasm State and Function Call

14

• Wasm state consisting of two records:

• The global store S, collecting all resources allocated by instantiation of
modules

• The local frame (local environment) F, which itself consists of:

• A list of local variables locs;

• A local runtime instance inst containing function types used, and
addresses to each field of the global store S.

• Each component of the store is modelled by an individual heap in
the memory model

• Frame cannot be split or shared in anyway, so is modelled by a unit
resource

Program Logic for Native WebAssembly
Example: Wasm State and Function Call

15

• We start with a state (S, F) given by:

• And execute [(i32.const 42); (call 0)] under this state.

[(i32.const 42);

(call 0)]

[(i32.const 42);

(invoke 1)]

[(Local F’

 [(get_local 0);

 (get_local 0);

 (i32.add);

 (return)

]

…

Program Logic for Native WebAssembly
Limitation of Native Wasm Code

16

• No native Wasm instructions can modify the list of function closures or function tables

• Calling static code in the store only, no real higher-order functions

• Function closures and function tables are results of resource allocations during module
instantiation

• A host supporting instantiation would allow more interesting examples

• Host can also choose to directly provide operations with more expressive power (e.g. Wasm-JS API)

• Program Logic for Native WebAssembly

• Modules and Host Language

17

Talk Overview

Modules and Host Language
WebAssembly Module

18

• A Wasm module M is a large record:

• types collect the function types used in the module

• funcs, tabs, mems, globs contain declarations of the corresponding resources
of the module

• elem, data are initialisers for tables and memories

• import states the type of the imports expected

• export states which resources declared by the modules are exposed to be
used by other modules

• start optionally chooses one of the functions declared to be executed
immediately after instantiating the module

Modules and Host Language
Example: Stack Module (Fragment)

19

• Defines one function of type [] -> [i32] which
declares one local variable, with a function
body consisting of native Wasm code

• Defines a memory with initial size 0 and no
maximum limit

• Exports the 0th function and name it
“new_stack”

Modules and Host Language
Example: Stack Module (Fragment)

20

• Function body of new_stack:

• attempts to allocate 1 new page in the memory
(64KB);

• if successful, maintain an abstract stack data
structure on that continuous segment of memory
and return the address of the starting byte.

Modules and Host Language
Module Instantiation

21

• Allocates each resource declared by the module
and add to the current global store S

• Initialisation of resources

• …

• Returns:

• A list of exports that can be imported by other modules later

• The resulting Wasm global store S’ after instantiation

• Essentially like ‘importing’ the module into our
global context S

Modules and Host Language
Example: Instantiating the Stack Module (Fragment)

22

• Given any existing store S, instantiating this
module:

• Pushes an additional function closure corresponding
for new_stack to the end of S.(funcs);

• Pushes a new memory (initially empty) to the end of S.
(mems);

• Generates an export corresponding to the new_stack
function to the host language; the host should store it
for potential future use by other modules;

• …

Modules and Host Language
Host Language

23

• Implemented a host language handling module instantiation

• Crafted a wp rule characterising the behaviour of instantiation

• Used it to verify an example stack module with a higher order map function

• Notable features:

• Host memory is a superset of the Wasm memory

• An additional heap that stores instantiated exports

• A separated wp to reason about host programs and resources

• Host wp depends on the Wasm one due to the presence of start functions which can call Wasm code

• 2 languages with 2 dependent but different wps, working on a similar set of memory model

Modules and Host Language

24

• 6 functions, all exported

• new_stack/is_empty/is_full/pop/push/stack_map

• 1 function table, exported

• ‘Interface’ for client modules to feed functions to use the
higher-order stack map

• 1 memory, not exported

• Encapsulation property will guarantee that the memory
can only be accessed through the interfaces we exposed

• Modular specification for instantiation verified using
the current instantiation wp rule

• Provide specifications of exported functions in the post

• A client module that tests our module, also verified

Example: Stack Module

Robust Safety

25

• What if unknown code is present — e.g. a module import functions from an
unknown module?

• Encapsulation of resources: external code has no access to resources in the module
unless exported

• Defined a logical relation over the entire program logic

• Large relation due to size of the language, but canonical

• Proved examples demonstrating the robust safety property

• The imported function $f from the unknown module $adv cannot modify the
encapsulated memory and global variable

Future Work

26

• Verify some real world code in Wasm

• Wasm is still an evolving language

• Wasm 2.0 (currently a candidate draft)

• Additional language features to Wasm, e.g. capability

