ASYNCHRONOUS
PROBABILISTIC COUPLINGS

in Higher-Order Separation Logic

Simon Gregersen Alejandro Aguirre Philipp Haselwarter

Joseph Tassarotti - Lars Birkedal

alejandro@cs.au.dk

AARHUS
¥ UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

May 23, 2023

One-time pad

We consider a real and an ideal implementation of the OTP encryption

real £ \(m: bool).let k = flip in (k xor m)
ideal = \(m: bool). flip

One-time pad

We consider a real and an ideal implementation of the OTP encryption

real £ \(m: bool).let k = flip in (k xor m)
ideal = \(m: bool). flip

Any adversary A should not be able to distinguish real from idedal, i.e.
VA.A(real) ~ A(ideal).

One-time pad

We consider a real and an ideal implementation of the OTP encryption

real £ \(m: bool).let k = flip in (k xor m)
ideal = \(m: bool). flip

Any adversary A should not be able to distinguish real from idedal, i.e.
VA.A(real) ~ A(ideal).

This is captured by contextual equivalence

Contextual equivalence

Two programs are contextually equivalent if they have the same behavior
under any context.

Contextual equivalence

Two programs are contextually equivalent if they have the same behavior
under any context.

Often hard to reason about directly, instead we use a logical relation.

Fele:r

Contextual equivalence

Two programs are contextually equivalent if they have the same behavior
under any context.

Often hard to reason about directly, instead we use a logical relation.

Fele:r

Multiple examples of this in Iris, e.g. ReLoC

o0
95

Clutch in a nutshell

In this work we develop Clutch', which consists of
» A probabilistic operational semantics for sequential probabilistic
languages
» A unary coupling-based WP to prove relations between probabilistic
programs

» A ReloC-style logical relation to prove contextual refinement of
probabilistic programs

» A ghost resource to reason about samples that happen in the future

! https://github.com/logsem/clutch

Structure of Clutch

ReloC

RelLoC logical refinement

RelLoC type interpretation

HeaplLang WP rules

HeaplLang
Iris WP

Iris base language

Iris base logic

Clutch

RelLoC + Clutch logical refinement

RelLoC + Clutch type interpretation

Iris + Clutch WP rules

rand
F,u,ref

Clutch WP

Clutch base language

Iris base logic

A proof in Clutch

F Am.letk = flip in (k xor m) = Am.flip : bool — bool

A proof in Clutch

m: bool E letk = flip in (k xor m) 3 flip : bool

F Am.letk = flip in (k xor m) = Am.flip : bool — bool

A proof in Clutch

f : B — B bijection
Vb: B. A ke K[b] 2 K'[f(b)] :
AFe K[flip] 2 K'[flip] : 7

-
COUPL

m: bool E letk = flip in (k xor m) 3 flip : bool

F Am.letk = flip in (k xor m) = Am.flip : bool — bool

A proof in Clutch

f : B — B bijection
Vb: B. A ke K[b] 2 K'[f(b)] :
AFe K[flip] 2 K'[flip] : 7

-
COUPL

(- xor m) bijection

m: bool E letk = flip in (k xor m) 3 flip : bool

F Am.letk = flip in (k xor m) = Am.flip : bool — bool

A proof in Clutch

f : B — B bijection
Vb: B. A ke K[b] 2 K'[f(b)] :
AFe K[flip] 2 K'[flip] : 7

-
COUPL

(- xor m) bijection

m,b: bool E letk = bin (k xor m) = b xor m : bool

m: bool E letk = flip in (k xor m) 3 flip : bool

F Am.letk = flip in (k xor m) = Am.flip : bool — bool

A proof in Clutch

m,b: bool E bxorm = bxorm : bool

(- xor m) bijection ,
m,b: bool E letk = bin (k xor m) = b xor m : bool

m: bool E letk = flip in (k xor m) 3 flip : bool

F Am.letk = flip in (k xor m) = Am.flip : bool — bool

Lemma real ideal rel :
- REL real << ideal : lrel bool - lrel bool.
Proof.
rel arrow val.
iIntros (msgl msg2) "Hmsg".
rel pures 1. rel pures r.
foldxor.
iDestruct "Hmsg" as "[%b [-> ->]]".
rel apply (refines couple flip flip (xor_sem b)).
iIntros (k)
rel pures 1
foldxor.
iApply xor xor sem.
Qed.

Operational semantics of probabilistic languages

A probabilistic sequential language

We introduce Ff”d :

et - sequential fragment of HeaplLang plus sampling

7 € Type =« | unit | bool | nat |int |7 X 7|7+ 7|7 — 7|

Va.7|3a. 7| po. 7 |refr

e € Expri=v|z|ei(e2) |ifethene; elsees | fst(e) | snd(e) | ref(e) |
le|ey < eg | folde|unfolde| --- | flip

flip chooses uniformly between true and false.

Our implementation supports discrete uniform sampling as well

Probability distributions

A distribution over a countable type A is a non-negative map p: A — R
suchthat) . 4 pu(a) < 1.

Probability distributions have a monadic structure given by:
ret: A — D(A)
ret(a) 2 \d'.if (a = ') then 1 else 0
>= D(A) (A — D(B)) — D(B)

(n>=f)(b) & > pla)

a€A

Operational semantics

We start from a probabilistic head step reduction hdStep: Cfg — D(Cfq):

(A\z.e)v,0 =} e[v/,o

flip, o —>r11/2 b,o b € {true,false}

Operational semantics

We start from a probabilistic head step reduction hdStep: Cfg — D(Cfq):

(A\z.e)v,0 =} e[v/,o

flip, o —>r11/2 b,o b € {true,false}

and lift it to reduction in context step: Cfg — D(Cfq):

/
e,o —>ﬁe,a

(Kle], o) =" (K[¢],0")

Probabilistic evaluation

We define a “stratified” evaluation and full evaulation as the limit:

rete if e €Val
exect(e,0) 2 <0 ifeecValAn=0
step(e, o) 3= execy, ife eValAn=m+ 1

A .
exect(e,0) £ limy,_o0 exect

By summing over all values, we obtain the probability of termination:

Pterm(e, o) Z exect(e, o) (v)

Probabilistic languages in Iris

We define an abstract notion of probabilistic Language, in which
prim_stepis afunction.

Structure language := Language {
expr : Type;
state : Type;
(¥ occ ¥)
prim step : expr - state - distr (expr * state);
(G)

We then lift it into an EctxLanguage

Structure ectxlLanguage := EctxLanguage {
(REP)
fill : ectx - expr - expr;
decomp : expr - ectx * expr;
head step : expr - state - distr (expr * state);
(G}

}.
and decompose expressions explicitly

Definition prim step (el : expr A) (ol : state A)
: distr (expr A * state A) :=
let '(K, el') := decomp el in
'(e2, 02) < head step el' ol; dret (fill K e2, 02)

A coupling-based WP

Couplings 101

Couplings are a construction that allows us to reason relationally about
probabilistic programes.

Couplings 101

Couplings are a construction that allows us to reason relationally about
probabilistic programes.
To construct a coupling between p;: D(A), po: D(B):

Couplings 101

Couplings are a construction that allows us to reason relationally about
probabilistic programes.
To construct a coupling between p;: D(A), po: D(B):

» We pick a way of synchronizing the randomness of the two distributions

Couplings 101

Couplings are a construction that allows us to reason relationally about
probabilistic programes.
To construct a coupling between p;: D(A), po: D(B):

» We pick a way of synchronizing the randomness of the two distributions

» We ensure that every possible outcome satisfies a particular
R:A— B — Prop

Couplings 101

Couplings are a construction that allows us to reason relationally about
probabilistic programes.
To construct a coupling between p;: D(A), po: D(B):

» We pick a way of synchronizing the randomness of the two distributions

» We ensure that every possible outcome satisfies a particular
R:A— B — Prop

We then say that “uy and g are coupled by R”.

notation: w1~ 2 R

Couplings 101

Probabilistic Couplings

Probabilistic Couplings

Reasoning with couplings

Reasoning with couplings

(a,b) € R

Introduction:
ret(a) ~ ret(b) : R

Reasoning with couplings

(a,b) € R FiB—oBbi. Vb, (b f(b)€R

Introduction: - .
ret(a) ~ ret(b) : R flip ~ flip: R

Reasoning with couplings

(a,b) € R FiB—oBbi. Vb, (b f(b)€R

Introduction: - .
ret(a) ~ ret(b) : R flip ~ flip: R

uy ~ po: R V(a,b) € R. fi(a) ~ fa(b) : S

Sequencing: p1 = f1 o~ g 3= fo 1 S

Reasoning with couplings

b : ..'
Introduction: (a,b) € R f:B—-B b'” .va (b, f(b)) € R
ret(a) ~ ret(b) : R flip ~ flip: R
~pg: R V(a,b) € R. ~ fo(b): S
Sequencing: p1 ™ R (a,b) fi(a) ~ f2(b)
p1>= fr~vpe>=fo S
Elimination: p s (5)

Va.p(z) = po(z)

A coupling-based WP

Our WP couples the execution of the implementation program e; with
another specification program whose configuration p is tracked by a
specification predicate G(p):

21

A coupling-based WP

Our WP couples the execution of the implementation program e; with
another specification program whose configuration p is tracked by a
specification predicate G(p):

WpP¢ €1 {(I)} =S (6’1 eVal A }35 @(61)) V
(e1 €Val AVay, pa. S(o1) * G(p2) —* By
execCoupl(ey, o1, p2)

(Ae1, 01, ph. & e S(01) * G(ph) * wpg €] {2}))

21

A coupling-based WP

Our WP couples the execution of the implementation program e; with
another specification program whose configuration p is tracked by a
specification predicate G(p):

WpP¢ €1 {(I)} =S (61 €Val A E&' @(61)) V
(e1 €Val AVay, pa. S(o1) * G(p2) —* By
execCoupl(ey, o1, p2)

(Ae1, 01, ph. & e S(01) * G(ph) * wpg €] {2}))

21

A coupling-based WP

Our WP couples the execution of the implementation program e; with
another specification program whose configuration p is tracked by a
specification predicate G(p):

WpP¢ €1 {(I)} =S (6’1 eVal A }35 @(61)) V
(e1 €Val AVay, pa. S(o1) * G(p2) —* By
execCoupl(ey, o1, p2)

(Ae1, 01, ph. & e S(01) * G(ph) * wpg €] {2}))

21

A coupling-based WP

Our WP couples the execution of the implementation program e; with
another specification program whose configuration p is tracked by a
specification predicate G(p):

WpP¢ €1 {(I)} =S (6’1 eVal A }35 @(61)) V
(e1 €Val AVay, pa. S(o1) * G(p2) —* By
execCoupl(ey, o1, p2)

(Ae1, 01, ph. & e S(01) * G(ph) * wpg €] {2}))

21

A coupling-based WP

Our WP couples the execution of the implementation program e; with
another specification program whose configuration p is tracked by a
specification predicate G(p):

WpP¢ €1 {(I)} =S (6’1 eVal A }35 <I>(61)) V
(e1 €Val AVoy, pa. S(o1) * G(p2) — ¢By
execCoupl(ey, o1, p2)

(Ae1, 01, ph. & e S(01) * G(ph) * wpg €] {2}))

execCoupl couples every step on the LHS with O or more steps on the RHS.

21

A coupling-based WP

Our WP couples the execution of the implementation program e; with
another specification program whose configuration p is tracked by a
specification predicate G(p):

WpP¢ €1 {(I)} =S (6’1 eVal A }35 <I>(61)) V
(e1 €Val AVay, pa. S(o1) * G(p2) —* By
execCoupl(ey, o1, p2)

(A, a1, ph. & e S(01) * G(ph) * wWpg €] {2}))

execCoupl couples every step on the LHS with O or more steps on the RHS.

21

A coupling-based WP

Our WP couples the execution of the implementation program e; with
another specification program whose configuration p is tracked by a
specification predicate G(p):

WpP¢ €1 {(I)} =S (6’1 eVal A }35 <I>(61)) V
(e1 €Val AVay, pa. S(o1) * G(p2) —* By
execCoupl(ey, o1, p2)

(Ae1, 01, ph. & e S(0) * G(ph) * wpg €] {2}))

execCoupl couples every step on the LHS with O or more steps on the RHS.

21

A coupling-based WP

Our WP couples the execution of the implementation program e; with
another specification program whose configuration p is tracked by a
specification predicate G(p):

WpP¢ €1 {(I)} =S (6’1 eVal A }35 <I>(61)) V

(e1 €Val AVay, pa. S(o1) * G(p2) —* By
execCoupl(ey, o1, p2)

(Ae1, 01, ph. & e S(0h) * G(p)) * wpg €] {2}))

execCoupl couples every step on the LHS with O or more steps on the RHS.

21

A coupling-based WP

Our WP couples the execution of the implementation program e; with
another specification program whose configuration p is tracked by a
specification predicate G(p):

WpP¢ €1 {(I)} =S (6’1 eVal A }35 <I>(61)) V
(e1 €Val AVay, pa. S(o1) * G(p2) —* By
execCoupl(ey, o1, p2)

(Ae1, 01, ph. & e S(01) * G(ph) * wpg €] {D}))

execCoupl couples every step on the LHS with O or more steps on the RHS.

21

Abstraction through couplings

The coupling-based WP acts as an abstraction layer:
» The postcondition has type @ : Val — iProp (and not D(Val) — iProp)

» No explicit reasoning about probabilities, everything is hidden by
execCoupl

» In fact, WP obeys the standard rules for the deterministic sequential
fragment of HeaplLang

» We only add new rules for probabilistic constructs

22

Adequacy

Assume:

specCtx * spec(e’) - wp e {v. 3. spec(v') * p(v,v')}

Adequacy

Assume:

specCtx * spec(e’) - wp e {v. 3. spec(v') * p(v,v')}

» ReloC: If e terminates, so does ¢/, and the result values are related by ¢

23

Adequacy

Assume:
specCtx * spec(e’) - wp e {v. 3. spec(v') * p(v,v')}

» ReloC: If e terminates, so does ¢/, and the result values are related by ¢

» Clutch: e terminates with lower or equal probability than ¢’ and the
result distributions are coupled by ¢

23

Reasoning about contextual refinement

Contextual refinement

Two programs are contextually equivalent if they have the same observable
behavior under any context.
We define contextual refinement through the termination probability:

O|Fe Zexer:TEVI,(C:(O|TFT)=0|0F 1)), 0.
Pterm(Cle1], o) < Pterm(Clez], o)

25

Logical refinement

We define a ReLoC-style logic refinement and prove it sound wrt. contextual
refinement:

AFgep Zeg: 72 VK. specCtx — G(K|[ez]) —« naTok(€) —«

wp e1 {v1.3ve. G(K[va]) * naTok(T) x [r]a(v1,v2)}

The value interpretation [7] a(v1, v2) is essentially the same as in ReLoC.

26

Some relational rules

We recover the standard RelLoC rules:

e T’ ey >(AFe Kle}] Zex:7) g e AFcer S Kley): 7
AFe Klel| Zea: T AFger I Kleg]: 7

Vll—v— AFg K[l] Zea:7 (= C—w— AFe K[()] Sea:T

AFe Klref(v)] Zea: 7 AFc K[l w)Zex:T

27

A coupling rule

To reason relationally about probabilistic choices, the judgment satisfies

f: B — Bbijection Vb.AFg K[b] 2 K'[f(b)]: T
AEe K[flip] 2 K'[flip] : 7

This rule builds a coupling for flip and sequences it through the contexts

28

Soundness

Theorem (Soundness)

Logical refinement implies contextual refinement

29

Soundness

Theorem (Soundness)

Logical refinement implies contextual refinement

In particular
Ee1 2 es: bool

implies

exect(ey, 0)(true) < exect(eq, o)(true)

exect (e, 0)(false) < exec!(ey, o) (false)

29

But...

The approach fundamentally relies on being able to “synchronize” the
probabilistic samplings.

[bijection Vb. A kg Kb 2 K'[f(b)]: T
A Fe K[flip] < K'[flip] :

This is not always possible.

30

Eager vs Lazy sampling

lazy £ letr = ref(None) in
A_. match !'r with

eager = letb = flip in Some(b) = b
A b | None = letb = flip in
r < Some(b);
b

end

31

Eager vs Lazy sampling

lazy £ letr = ref(None) in
A_. match !'r with

eager = letb = flip in Some(b) = b
Ab |None = letb=flipin
r < Some(b);
b
end

How can we show - eager ~ lazy : unit — nat ?

31

Asynchronous probabilistic couplings

Asynchronous couplings

We extend the operational semantics with presampling tapes and labelled

flips
tape, o —=! 1,0 € if . = fresh(o)
flio(e), 0 =% n,o ifo(l) =€
flip(s), 0 =1 b,olt — b] ifo(l)=0b-b

Note: The tapes can only be populated at the logical level, no language
operation writes to them

33

This is modelled by a “points-to-like” connective:

)

The asynchronous coupling rule looks like:

f bijection e ¢Val L b Vbbb — AFce JK'[f()]: T

AFee S K'[flip]:T

Soundness relies on the fact that presampling does not change the result
distribution

34

Future work

» Reasoning about approximate contextual equivalence.

» Supporting more general notions of probabilistic refinement, e.q.
Markov Decision Processes.

» Supporting quantitative reasoning about expected costs, runtime, etc.
» Constructing couplings across recursive calls.

35

&)
Clutch in a nutshell Ir "

» A probabilistic operational semantics for sequential probabilistic
languages

» A unary coupling-based WP to prove relations between probabilistic
programs

» A ReloC-style logical relation to prove contextual refinement of
probabilistic programs

» A ghost resource to reason about samples that happen in the future

Try Clutch! https://github.com/logsem/clutch

36

