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Contextual equivalence

Two programs are contextually equivalent if they have the same behavior
under any context.

Often hard to reason about directly, instead we use a logical relation.

Fele:r

Multiple examples of this in Iris, e.g. ReLoC
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Clutch in a nutshell

In this work we develop Clutch', which consists of
» A probabilistic operational semantics for sequential probabilistic
languages
» A unary coupling-based WP to prove relations between probabilistic
programs

» A ReloC-style logical relation to prove contextual refinement of
probabilistic programs

» A ghost resource to reason about samples that happen in the future

! https://github.com/logsem/clutch



Structure of Clutch

ReloC

RelLoC logical refinement

RelLoC type interpretation

HeaplLang WP rules

HeaplLang
Iris WP

Iris base language

Iris base logic

Clutch

RelLoC + Clutch logical refinement

RelLoC + Clutch type interpretation

Iris + Clutch WP rules

rand
F,u,ref

Clutch WP

Clutch base language

Iris base logic
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f : B — B bijection
Vb: B. A ke K[b] 2 K'[f(b)] :
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A proof in Clutch

m,b: bool E bxorm = bxorm : bool

(- xor m) bijection ,
m,b: bool E letk = bin (k xor m) = b xor m : bool

m: bool E letk = flip in (k xor m) 3 flip : bool

F Am.letk = flip in (k xor m) = Am.flip : bool — bool



Lemma real ideal rel :
- REL real << ideal : lrel bool - lrel bool.
Proof.
rel arrow val.
iIntros (msgl msg2) "Hmsg".
rel pures 1. rel pures r.
foldxor.
iDestruct "Hmsg" as "[%b [-> ->]]".
rel apply (refines couple flip flip (xor_sem b)).
iIntros (k)
rel pures 1
foldxor.
iApply xor xor sem.
Qed.



Operational semantics of probabilistic languages



A probabilistic sequential language

We introduce Ff”d :

et - sequential fragment of HeaplLang plus sampling

7 € Type =« | unit | bool | nat |int |7 X 7|7+ 7|7 — 7|

Va.7|3a. 7| po. 7 |refr

e € Expri=v|z|ei(e2) |ifethene; elsees | fst(e) | snd(e) | ref(e) |
le|ey < eg | folde|unfolde| --- | flip

flip chooses uniformly between true and false.

Our implementation supports discrete uniform sampling as well



Probability distributions

A distribution over a countable type A is a non-negative map p: A — R
suchthat ) . 4 pu(a) < 1.

Probability distributions have a monadic structure given by:
ret: A — D(A)
ret(a) 2 \d'.if (a = ') then 1 else 0
>= D(A) (A — D(B)) — D(B)

(n>=f)(b) & > pla)

a€A
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Operational semantics

We start from a probabilistic head step reduction hdStep: Cfg — D(Cfq):

(A\z.e)v,0 =} e[v/,o

flip, o —>r11/2 b,o b € {true,false}

and lift it to reduction in context step: Cfg — D(Cfq):

/
e,o —>ﬁe,a

(Kle], o) =" (K[¢],0")




Probabilistic evaluation

We define a “stratified” evaluation and full evaulation as the limit:

rete if e €Val
exect(e,0) 2 <0 ifeecValAn=0
step(e, o) 3= execy, ife eValAn=m+ 1

A .
exect(e,0) £ limy,_o0 exect

By summing over all values, we obtain the probability of termination:

Pterm(e, o) Z exect(e, o) (v)



Probabilistic languages in Iris

We define an abstract notion of probabilistic Language, in which
prim_stepis afunction.

Structure language := Language {
expr : Type;
state : Type;
(¥ occ ¥)
prim step : expr - state - distr (expr * state);
(G )



We then lift it into an EctxLanguage

Structure ectxlLanguage := EctxLanguage {
(REP )
fill : ectx - expr - expr;
decomp : expr - ectx * expr;
head step : expr - state - distr (expr * state);
(G}

}.
and decompose expressions explicitly

Definition prim step (el : expr A) (ol : state A)
: distr (expr A * state A) :=
let '(K, el') := decomp el in
'(e2, 02) < head step el' ol; dret (fill K e2, 02)



A coupling-based WP
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Couplings 101

Couplings are a construction that allows us to reason relationally about
probabilistic programes.
To construct a coupling between p;: D(A), po: D(B):

» We pick a way of synchronizing the randomness of the two distributions

» We ensure that every possible outcome satisfies a particular
R:A— B — Prop

We then say that “uy and g are coupled by R”.

notation: w1~ 2 R



Couplings 101
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Reasoning with couplings

(a,b) € R

Introduction:
ret(a) ~ ret(b) : R
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Reasoning with couplings

(a,b) € R FiB—oBbi. Vb, (b f(b)€R

Introduction: - .
ret(a) ~ ret(b) : R flip ~ flip: R

uy ~ po: R V(a,b) € R. fi(a) ~ fa(b) : S

Sequencing: p1 = f1 o~ g 3= fo 1 S




Reasoning with couplings

b : ..'
Introduction: (a,b) € R f:B—-B b'” .va (b, f(b)) € R
ret(a) ~ ret(b) : R flip ~ flip: R
~pg: R V(a,b) € R. ~ fo(b): S
Sequencing: p1 ™ R (a,b) fi(a) ~ f2(b)
p1>= fr~vpe>=fo S
Elimination: p s (5)

Va.p(z) = po(z)
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A coupling-based WP

Our WP couples the execution of the implementation program e; with
another specification program whose configuration p is tracked by a
specification predicate G(p):

WpP¢ €1 {(I)} =S (6’1 eVal A }35 <I>(61)) V
(e1 €Val AVay, pa. S(o1) * G(p2) —* By
execCoupl(ey, o1, p2)

(Ae1, 01, ph. & e S(01) * G(ph) * wpg €] {D}))

execCoupl couples every step on the LHS with O or more steps on the RHS.

21



Abstraction through couplings

The coupling-based WP acts as an abstraction layer:
» The postcondition has type @ : Val — iProp (and not D(Val) — iProp)

» No explicit reasoning about probabilities, everything is hidden by
execCoupl

» In fact, WP obeys the standard rules for the deterministic sequential
fragment of HeaplLang

» We only add new rules for probabilistic constructs

22
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Adequacy

Assume:
specCtx * spec(e’) - wp e {v. 3. spec(v') * p(v,v')}

» ReloC: If e terminates, so does ¢/, and the result values are related by ¢

» Clutch: e terminates with lower or equal probability than ¢’ and the
result distributions are coupled by ¢

23



Reasoning about contextual refinement



Contextual refinement

Two programs are contextually equivalent if they have the same observable
behavior under any context.
We define contextual refinement through the termination probability:

O|Fe Zexer:TEVI,(C:(O|TFT)=0|0F 1)), 0.
Pterm(Cle1], o) < Pterm(Clez], o)

25



Logical refinement

We define a ReLoC-style logic refinement and prove it sound wrt. contextual
refinement:

AFgep Zeg: 72 VK. specCtx — G(K|[ez]) —« naTok(€) —«

wp e1 {v1.3ve. G(K[va]) * naTok(T) x [r]a(v1,v2)}

The value interpretation [7] a(v1, v2) is essentially the same as in ReLoC.

26



Some relational rules

We recover the standard RelLoC rules:

e T’ ey >(AFe Kle}] Zex:7) g e AFcer S Kley): 7
AFe Klel| Zea: T AFger I Kleg]: 7

Vll—v— AFg K[l] Zea:7 (= C—w— AFe K[()] Sea:T

AFe Klref(v)] Zea: 7 AFc K[l w)Zex:T

27



A coupling rule

To reason relationally about probabilistic choices, the judgment satisfies

f: B — Bbijection  Vb.AFg K[b] 2 K'[f(b)]: T
AEe K[flip] 2 K'[flip] : 7

This rule builds a coupling for flip and sequences it through the contexts

28



Soundness

Theorem (Soundness)

Logical refinement implies contextual refinement

29



Soundness

Theorem (Soundness)

Logical refinement implies contextual refinement

In particular
Ee1 2 es: bool

implies

exect(ey, 0)(true) < exect(eq, o)(true)

exect (e, 0)(false) < exec!(ey, o) (false)

29



But...

The approach fundamentally relies on being able to “synchronize” the
probabilistic samplings.

[ bijection  Vb. A kg Kb 2 K'[f(b)]: T
A Fe K[flip] < K'[flip] :

This is not always possible.

30



Eager vs Lazy sampling

lazy £ letr = ref(None) in
A_. match !'r with

eager = letb = flip in Some(b) = b
A b | None = letb = flip in
r < Some(b);
b

end

31



Eager vs Lazy sampling

lazy £ letr = ref(None) in
A_. match !'r with

eager = letb = flip in Some(b) = b
Ab |None = letb=flipin
r < Some(b);
b
end

How can we show - eager ~ lazy : unit — nat ?

31
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Asynchronous couplings

We extend the operational semantics with presampling tapes and labelled

flips
tape, o —=! 1,0 € if . = fresh(o)
flio(e), 0 =% n,o ifo(l) =€
flip(s), 0 =1 b,olt — b] ifo(l)=0b-b

Note: The tapes can only be populated at the logical level, no language
operation writes to them

33



This is modelled by a “points-to-like” connective:

)

The asynchronous coupling rule looks like:

f bijection e ¢Val L b Vbbb — AFce JK'[f()]: T

AFee S K'[flip]:T

Soundness relies on the fact that presampling does not change the result
distribution

34



Future work

» Reasoning about approximate contextual equivalence.

» Supporting more general notions of probabilistic refinement, e.q.
Markov Decision Processes.

» Supporting quantitative reasoning about expected costs, runtime, etc.
» Constructing couplings across recursive calls.

35
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Clutch in a nutshell Ir "

» A probabilistic operational semantics for sequential probabilistic
languages

» A unary coupling-based WP to prove relations between probabilistic
programs

» A ReloC-style logical relation to prove contextual refinement of
probabilistic programs

» A ghost resource to reason about samples that happen in the future

Try Clutch!  https://github.com/logsem/clutch
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