
Formal verification of a
concurrent file system

Tej Chajed

VMware Research / UW-Madison

joint work with Joseph Tassarotti, Frans Kaashoek,
Nickolai Zeldovich, Ralf Jung, and Mark Theng

Iris workshop
May 24, 2023

2

Systems software is challenging to get right

2

Systems software is challenging to get right

Applications exercise all
corners of the system API

Runs on raw hardware:
crashes, concurrency, devices

3

Systems verification is becoming feasible

Microkernels (seL4, CertiKOS)

Cryptography libraries (Fiat Crypto, HACL*)

Distributed systems (IronFleet, Verdi)

File systems (FSCQ, BilbyFS)

4

DaisyNFS is a verified, concurrent file system

Built on the Perennial logic, based on Iris

Combines PL and systems techniques

This talk: verifying DaisyNFS

5

NFS is a good target for verification

1. Widely used

2. Sophisticated implementations with
concurrency & high performance

3. Bugs are costly, especially data loss

6

DaisyNFS implements an NFS server

DaisyNFS

Go compiler

daisy-nfsd
NFS protocol

client

6

DaisyNFS implements an NFS server

DaisyNFS What is Go?
• Popular new language,

supported by Google
• Compiled, efficient, good

concurrencyGo compiler

daisy-nfsd
NFS protocol

client

7

DaisyNFS is a verified NFS server

Theorem (informal): the server
correctly implements the NFS
protocol.

DaisyNFS

Go compiler

daisy-nfsd
NFS protocol

client

8

Challenges in verifying a file system

Crashes Concurrency

9

REMOVE has several steps

func REMOVE(d_ino: uint64,
 name: []byte) {

 f := unlink(d_ino, name)

 blocks := getBlocks(f)

 free(blocks)

}

d_ino

f blocks

9

REMOVE has several steps

func REMOVE(d_ino: uint64,
 name: []byte) {

 f := unlink(d_ino, name)

 blocks := getBlocks(f)

 free(blocks)

}

d_ino

f blocks

1

2

3

9

REMOVE has several steps

func REMOVE(d_ino: uint64,
 name: []byte) {

 f := unlink(d_ino, name)

 blocks := getBlocks(f)

 free(blocks)

}

d_ino

f blocks
✗1

unlink

1

2

3

9

REMOVE has several steps

func REMOVE(d_ino: uint64,
 name: []byte) {

 f := unlink(d_ino, name)

 blocks := getBlocks(f)

 free(blocks)

}

d_ino

f blocks
✗1

unlink

3

✗

free1

2

3

10

Crashes create subtle bugs

func REMOVE(d_ino: uint64,
 name: []byte) {

 f := unlink(d_ino, name)

 blocks := getBlocks(f)

 free(blocks)

}

f blocks

3 free1

2

3

crash ✗1

unlink

d_ino

10

Crashes create subtle bugs

func REMOVE(d_ino: uint64,
 name: []byte) {

 f := unlink(d_ino, name)

 blocks := getBlocks(f)

 free(blocks)

}

f blocks

3 free1

2

3

crash

crash leaks f’s blocks

d_ino

11

Concurrency also creates subtle bugs

func REMOVE(d_ino: uint64,
 name: []byte) {

 f := unlink(d_ino, name)

 blocks := getBlocks(f)

 free(blocks)

}

f blocks

3 free1

3

2

d_ino

11

Concurrency also creates subtle bugs

func REMOVE(d_ino: uint64,
 name: []byte) {

 f := unlink(d_ino, name)

 blocks := getBlocks(f)

 free(blocks)

}

f blocks

3 free1

3
concurrent
append

2

d_ino

11

Concurrency also creates subtle bugs

func REMOVE(d_ino: uint64,
 name: []byte) {

 f := unlink(d_ino, name)

 blocks := getBlocks(f)

 free(blocks)

}

f blocks

3 free1

3

not all blocks are freed

concurrent
append

2

d_ino

12

Crashes and concurrency bugs can be severe

Might leak resources

Might return the wrong user’s data

Might lose user data

13

Approach: verification-friendly system design

GoTxn

DaisyNFS

Transaction system gives atomicity

File-system code implemented with transactions

13

Approach: verification-friendly system design

GoTxn

DaisyNFS

Transaction system gives atomicity

File-system code implemented with transactions

Crashes Concurrency

13

Approach: verification-friendly system design

GoTxn

DaisyNFS

Transaction system gives atomicity

File-system code implemented with transactions

Crashes Concurrency

Sequential reasoning

13

Approach: verification-friendly system design

GoTxn

DaisyNFS

Transaction system gives atomicity

File-system code implemented with transactions

Crashes Concurrency

Specification for transactions bridges the two

Sequential reasoning

14

Contributions

GoTxn

DaisyNFS

Specification
for transactions

14

Contributions

GoTxn

DaisyNFS
Reduce proof effort with sequential
reasoning for a concurrent system

Specification
for transactions

14

Contributions

GoTxn

DaisyNFS

Lifting specification for concurrent transactions

Reduce proof effort with sequential
reasoning for a concurrent system

Specification
for transactions

14

Contributions

GoTxn

DaisyNFS

Lifting specification for concurrent transactions

Abstract state for write-ahead logging
based on history of writes

Reduce proof effort with sequential
reasoning for a concurrent system

Specification
for transactions

14

Contributions

Perennial

GoTxn

DaisyNFS

Perennial logic for concurrency
and crash reasoning

Lifting specification for concurrent transactions

Abstract state for write-ahead logging
based on history of writes

Reduce proof effort with sequential
reasoning for a concurrent system

Specification
for transactions

15

Specification
for transactions

16

Transactions automatically give atomicity

func Begin() *Txn

func (tx *Txn) Read(…)
func (tx *Txn) Write(…)

func (tx *Txn) Commit()

Code between Begin() and
Commit() is atomic both on crash
and to other threads

GoTxn

17

Specifying a transaction system

Spec (GoTxn API)

tx
tx
v := tx.Read(0)
tx.Write(1, v)

Code (Go)

Read Write

17

Specifying a transaction system

Spec (GoTxn API)

tx
tx
v := tx.Read(0)
tx.Write(1, v)

Code (Go)

Read Write

17

Specifying a transaction system

Spec (GoTxn API)

tx
tx

Every actual
execution…

…should be allowed
by the specification

v := tx.Read(0)
tx.Write(1, v)

18

Specifying crash atomicity for transactions

Spec (GoTxn API)

(noop)

∨ tx
tx
v := tx.Read(0)
tx.Write(1, v)

Code (Go)

…

18

Specifying crash atomicity for transactions

Spec (GoTxn API)

(noop)

∨ tx
tx
v := tx.Read(0)
tx.Write(1, v)

Code (Go)

…

18

Specifying crash atomicity for transactions

Spec (GoTxn API)

(noop)

∨ tx

…should be allowed
by the specification

Every crashing
execution…

tx
v := tx.Read(0)
tx.Write(1, v)

19

tx := Begin()
v := tx.Read(0)
tx.Write(1, v)

tx.Commit()

Specifying sequential transactional API

tx.Write(2, v)

19

v

v v v

tx := Begin()
v := tx.Read(0)
tx.Write(1, v)

tx.Commit()

Specifying sequential transactional API

tx.Write(2, v)

19

v

v v v

tx := Begin()
v := tx.Read(0)
tx.Write(1, v)

tx.Commit()
what is the
state here?

Specifying sequential transactional API

tx.Write(2, v)

19

v

v v v

tx := Begin()
v := tx.Read(0)
tx.Write(1, v)

tx.Commit()
what is the
state here?

how to capture that crash
results in initial or final state?

Specifying sequential transactional API

tx.Write(2, v)

20

Specifying sequential transactional API

tx.Commit()

vdisk

v v vdisk

tx := Begin()
v := tx.Read(0)
tx.Write(1, v)

tx.Write(2, v)

20

Specifying sequential transactional API

tx.Commit()

v

tx

disk v

v v

disk

v v v

transaction’s
in-memory view

disk

tx := Begin()
v := tx.Read(0)
tx.Write(1, v)

tx.Write(2, v)

21

Specifying sequential transactional API

tx.Commit()

v

tx

disk v

v v v

disk

v v vdisk

tx := Begin()
v := tx.Read(0)
tx.Write(1, v)
tx.Write(2, v)

22

Separation logic to specify Commit without
crashes

{ {
tx.Commit()

tx

disk v

v v v

{ {v v vdisk

pre

post

23

Perennial logic adds crash conditions

{ {
tx.Commit()

tx

disk v

v v v

{ {v v vdisk

pre

post

[CZCCKZ, SOSP ’15]
[CTTJKZ, OSDI ’21]

23

Perennial logic adds crash conditions

{ {
tx.Commit()

{ {disk
v ∨

v v v

tx

disk v

v v v

{ {v v vdisk

crash

pre

post

[CZCCKZ, SOSP ’15]
[CTTJKZ, OSDI ’21]

24

Generalizing to include concurrency

Spec (GoTxn API)

∨tx1 tx2

Code (Go)

…

24

Generalizing to include concurrency

Spec (GoTxn API)

∨tx1 tx2

Every actual
execution…

…is allowed by the
(atomic) specification

25

Challenge: specifying concurrent transactions

tx1 := Begin()
v := tx1.Read(0)
tx1.Write(1, v)

tx2 := Begin()
tx2.Write(4, data)
tx2.Commit()tx1.Write(2, v)

tx1.Commit()

26

Challenge: specifying concurrent transactions

tx1 := Begin()
v := tx1.Read(0)
tx1.Write(1, v)

tx2 := Begin()
tx2.Write(4, data)
tx2.Commit()

vdisk

tx1.Write(2, v)
tx1.Commit()

v data

26

Challenge: specifying concurrent transactions

tx1 := Begin()
v := tx1.Read(0)
tx1.Write(1, v)

tx2 := Begin()
tx2.Write(4, data)
tx2.Commit()

vdisk

tx1.Write(2, v)
tx1.Commit()

v data
How to reason about

transactions separately?

27

tx1 := Begin()
v := tx1.Read(0)
tx1.Write(1, v)
tx1.Write(2, v)

tx2 := Begin()
tx2.Write(4, data)

vdisk

v v v datadisk

Idea: lifting-based specification
[CTTJKZ, OSDI ’21]

27

tx1 := Begin()
v := tx1.Read(0)
tx1.Write(1, v)
tx1.Write(2, v)

tx2 := Begin()
tx2.Write(4, data)

vdisk

v

“Lift” ownership of
disk into transactions

v v v datadisk

Idea: lifting-based specification
[CTTJKZ, OSDI ’21]

27

tx1 := Begin()
v := tx1.Read(0)
tx1.Write(1, v)
tx1.Write(2, v)

tx2 := Begin()
tx2.Write(4, data)

vdisk

v v vtx1

v

“Lift” ownership of
disk into transactions

v v v datadisk

Idea: lifting-based specification
[CTTJKZ, OSDI ’21]

27

tx1 := Begin()
v := tx1.Read(0)
tx1.Write(1, v)
tx1.Write(2, v)

tx2 := Begin()
tx2.Write(4, data)

vdisk

v v vtx1

v

datatx2

“Lift” ownership of
disk into transactions

v v v datadisk

Idea: lifting-based specification
[CTTJKZ, OSDI ’21]

27

tx1 := Begin()
v := tx1.Read(0)
tx1.Write(1, v)
tx1.Write(2, v)

tx2 := Begin()
tx2.Write(4, data)

vdisk

v v vtx1

v

datatx2

“Lift” ownership of
disk into transactions

v v v datadisk

tx2.Commit()tx1.Commit()

Idea: lifting-based specification
[CTTJKZ, OSDI ’21]

28

Separation logic describes lifting

a ↦ b’
tx

a ↦ b0

disk

logical assertions
b0’ b1 b2’ b3 b4disk

b1’ b3tx

29

Commit spec captures atomicity

v1 v3disk

v1’ v3’tx

[CTTJKZ, OSDI ’21]

29

Commit spec captures atomicity

disk

a ↦ v
tx

a ↦ v′ v1 v3disk

v1’ v3’tx

[CTTJKZ, OSDI ’21]

29

Commit spec captures atomicity

{ {
tx.Commit()

{ {disk
a ↦ v′

disk

a ↦ v
tx

a ↦ v′ v1 v3disk

v1’ v3’tx

[CTTJKZ, OSDI ’21]

29

Commit spec captures atomicity

{ {
tx.Commit()

{ {disk
a ↦ v′

{ {disk

a ↦ v
disk

a ↦ v′ ∨

disk

a ↦ v
tx

a ↦ v′ v1 v3disk

v1’ v3’tx

crash condition is atomic

[CTTJKZ, OSDI ’21]

30

Lifting specification describes the GoTxn API

{ {
tx.Commit()

{ {disk
a ↦ v′

{ {disk

a ↦ v
disk

a ↦ v′ ∨

disk

a ↦ v
tx

a ↦ v′

{ {
tx.Read(a)

{ {

tx

a ↦ v

tx

a ↦ v
returns v

{ {
tx.Write(a, v’)

{ {

tx

a ↦ v0

tx
a ↦ v′

[CTTJKZ, OSDI ’21]

31

Complete GoTxn specification

Spec (GoTxn API)

(noop)tx1 tx2

Code (Go)

…

31

Complete GoTxn specification

Spec (GoTxn API)

(noop)tx1 tx2

Every actual
execution…

…is allowed by the
(atomic) specification

32

Technical note: Coq proof shows refinement

 : Goose<Txn>es

ec : Goose<Disk>

⪯

32

Technical note: Coq proof shows refinement

 : Goose<Txn>es

ec : Goose<Disk>

⪯ atomically {
 v ← Read(0);
 Write(1, v);
}

tx := Begin()
v := tx.Read(0)
tx.Write(1, v)
tx.Commit()

33

Summary of specifying transaction system

Perennial logic supports specifying and proving
crash and concurrent behavior

Lifting specification describes concurrent
transactions

34

Perennial

35

Key judgment: Hoare “quadruple”

{P} e {Q} {T}

“crash condition”

If we halt during its execution, will holde T

36

Ownership with crashes is tricky

lock()

Thread
owns:

Lock
invariant:

P

P * S

S

f()
?

37

Crash locks support locking durable state

lock()

Thread
owns:

Crash
condition:

P

P * S

R

f()

unlock()

Lock
invariant:

S

Crash
invariant:

Sc

R * Sc

Q * S

Q

R * Sc

S Sc

38

Other challenges

Prove recovery is idempotent

Durable linearizability specifications

Connection to Go code

39

Roadmap

GoTxn

DaisyNFS

Transaction system gives atomicity

Crashes Concurrency

Specification that bridges the twoSpecification
for transactions ✓

File-system code implemented with transactions

39

Roadmap

GoTxn

DaisyNFS

Transaction system gives atomicity

Crashes Concurrency

Specification that bridges the twoSpecification
for transactions ✓

File-system code implemented with transactions

40

GoTxn

41

Implementing GoTxn

tx := Begin()
v := tx.Read(0)
tx.Write(1, v)
tx.Write(2, v)
tx.Commit()

41

Implementing GoTxn

tx := Begin()
v := tx.Read(0)
tx.Write(1, v)
tx.Write(2, v)
tx.Commit()

Write-ahead logging
makes writes crash-safe

41

Implementing GoTxn

tx := Begin()
v := tx.Read(0)
tx.Write(1, v)
tx.Write(2, v)
tx.Commit()

Two-phase locking
handles concurrency

Write-ahead logging
makes writes crash-safe

42

Write-ahead logging API

func Multiwrite(ws []Update)
type Update struct {
 addr uint64
 block []byte
}

func Read(a uint64) []byte
func Flush()

Write-ahead log (WAL)

43

Multi-block atomicity come from circular log

0 1 2 3 4 5

start
= 1

end
= 3

44

Multi-block atomicity come from circular log

0 1 2 3 4 5

start
= 1

end
= 6

1

44

Multi-block atomicity come from circular log

0 1 2 3 4 5

start
= 1

end
= 6

1

2

45

Crash never leaves a partial multiwrite

0 1 2 3 4 5

start
= 1

end
= 3

1

2

45

Crash never leaves a partial multiwrite

0 1 2 3 4 5

start
= 1

end
= 3

1

2

0 1 2 3 4 5

start
= 1

end
= 3

crash + recovery

46

Writing, logging, and installation are concurrent

…

fixed-size log data

log
install

in-memory buffer

multiwrite

47

Crashes are complicated in the WAL

…

fixed-size log data

log
install

in-memory buffer

multiwrite

47

Crashes are complicated in the WAL

…

fixed-size log data

log
install

in-memory buffer

multiwrite
buffered writes

are lost

47

Crashes are complicated in the WAL

…

fixed-size log data

log
install

in-memory buffer

multiwrite
buffered writes

are lost

partially logged
writes are lost

47

Crashes are complicated in the WAL

…

fixed-size log data

log
install

in-memory buffer

multiwrite
buffered writes

are lost

partially logged
writes are lost

will re-install these
blocks (safely)

48

Idea: model WAL as a history of multiwrites

fixed-size log data

in-memory buffer

…

physical
state

48

Idea: model WAL as a history of multiwrites

fixed-size log data

in-memory buffer

…

physical
state

invariant

abstract
state

multiwrites

latest

48

Idea: model WAL as a history of multiwrites

fixed-size log data

in-memory buffer

…

physical
state

invariant

abstract
state

multiwrites

latest

48

Idea: model WAL as a history of multiwrites

fixed-size log data

in-memory buffer

…

physical
state

invariant

abstract
state

installed logged

multiwrites

latest

49

History abstract state crisply expresses atomicity

fixed-size log data

in-memory buffer

…

physical
state

abstract
state

installed logged

multiwrites

latest

invariant

49

History abstract state crisply expresses atomicity

fixed-size log data

in-memory buffer

…

physical
state

abstract
state

installed logged

multiwrites

latest

invariant

50

Pointers can all advance concurrently

multiwrites

installed logged latest

50

Pointers can all advance concurrently

multiwrites

installed logged latest

advanced by
installer

advanced by
logger

advanced by
writes

51

Durable bound hides concurrency for rest of proof

durable_bound

multiwrites

51

Durable bound hides concurrency for rest of proof

logged

durable_bound

multiwrites

multiwrites

installed latest

invariant

51

Durable bound hides concurrency for rest of proof

logged

durable_bound

multiwrites

multiwrites

installed latest

invariant

52

Future work

Can we make this proof less messy?

Can we make it easier to improve the logging design?

52

Future work

Can we make this proof less messy?

Can we make it easier to improve the logging design?

52

Future work

Can we make this proof less messy?

Can we make it easier to improve the logging design?

53

Summary of proving the WAL in GoTxn

Abstract state for write-ahead logging based on
history of multiwrites and internal pointers

Lower bound on durable state hides concurrency

54

Roadmap

GoTxn

DaisyNFS

Transaction system gives atomicity

File-system code implemented with transactions

Crashes Concurrenc

Specification that bridges the two
Specification
for transactions

Sequential reasoning

✓

✓

54

Roadmap

GoTxn

DaisyNFS

Transaction system gives atomicity

File-system code implemented with transactions

Crashes Concurrenc

Specification that bridges the two
Specification
for transactions

Sequential reasoning

✓

✓

55

DaisyNFS

56

DaisyNFS is a verified file system on top of GoTxn

GoTxn

DaisyNFS

func Begin() *Txn

func (tx *Txn) Read(…)
func (tx *Txn) Write(…)

func (tx *Txn) Commit()

GETATTR, SETATTR, READ, WRITE,
CREATE, REMOVE, MKDIR, RENAME,
LOOKUP, READDIR,
FSINFO, PATHCONF, FSSTAT

transactions

NFS

[CTTKZ, OSDI ’22]

57

Challenges

Specification: formalizing NFS

Proof: leveraging atomicity from GoTxn

Implementation: fitting operations into transactions

58

Specification: how to formalize NFS (RFC 1813)?

59

DaisyNFS’s top-level specification

MKDIR(…) LOOKUP(…)

NFS

MKDIR LOOKUP

59

DaisyNFS’s top-level specification

MKDIR(…) LOOKUP(…)

Go

NFS

MKDIR LOOKUP

Every daisy-nfsd concurrent
execution…

should follow (atomic)
NFS specification

60

Proof: compose GoTxn and DaisyNFS proofs

MKDIR(…) LOOKUP(…)

Go

daisy-nfsd concurrent
execution

transactions are atomic
(GoTxn proof)

GoTxn API

60

Proof: compose GoTxn and DaisyNFS proofs

MKDIR(…) LOOKUP(…)

Go

NFS

MKDIR LOOKUP

daisy-nfsd concurrent
execution

transactions are atomic
(GoTxn proof)

GoTxn API

sequential transactions
are correct
(DaisyNFS proof)

61

Transactions are proven with sequential reasoning

GoTxn

NFS

MKDIR code LOOKUP code

MKDIR spec LOOKUP spec

61

Transactions are proven with sequential reasoning

GoTxn

NFS

MKDIR code LOOKUP code

MKDIR spec LOOKUP spec

invariant

61

Transactions are proven with sequential reasoning

GoTxn

NFS

MKDIR code LOOKUP code

MKDIR spec LOOKUP spec

invariant

Sequential reasoning
is highly automated

62

Future work: verify entirely in Iris

Can we use logical atomicity (with crashes) for
transaction spec?

Can we do the proof with low overhead in Iris?

63

Summary

Sequential reasoning for concurrent system

Formalized RFC 1813

Fit operations into fixed-size transactions

64

Implementation: code and verification

GoTxn

Dafny

DaisyNFS

3,500 lines

1,600 lines

64

Implementation: code and verification

GoTxn

Perennial 25,000
lines (Coq)

Proof of GoTxn

Dafny

DaisyNFS

3,500 lines

1,600 lines

64

Implementation: code and verification

GoTxn
Goose

Perennial 25,000
lines (Coq)

Proof of GoTxn

model of code

Dafny

DaisyNFS

3,500 lines

1,600 lines

64

Implementation: code and verification

GoTxn
Goose

Perennial 25,000
lines (Coq)

Proof of GoTxn

model of code

Dafny

DaisyNFS

Crashes Concurrency

3,500 lines

1,600 lines

64

Implementation: code and verification

GoTxn
Goose

Perennial 25,000
lines (Coq)

Proof of GoTxn

model of code

Dafny

Proof of DaisyNFSDaisyNFS

Crashes Concurrency

3,500 lines

1,600 lines

560 lines to specify NFS

64

Implementation: code and verification

GoTxn
Goose

Perennial 25,000
lines (Coq)

Proof of GoTxn

model of code

Dafny

Proof of DaisyNFSDaisyNFS

Crashes Concurrency

Sequential reasoning3,500 lines

1,600 lines

560 lines to specify NFS

65

Implementation: code

GoTxn

DaisyNFS

two-phase locking

journaling

sub-block objects

write-ahead log

directories

byte interface

indirect blocks

65

Implementation: code

GoTxn

DaisyNFS

two-phase locking

journaling

sub-block objects

write-ahead log

directories

byte interface

indirect blocks

No symbolic links
No access control
No paged READDIR

Limitations

65

Implementation: code

GoTxn

DaisyNFS

two-phase locking

journaling

sub-block objects

write-ahead log

directories

byte interface

indirect blocks

No symbolic links
No access control
No paged READDIR

Limitations

Synchronous commit
Assume disk is synchronous

Limitations

66

DaisyNFS is a real file system

66

DaisyNFS is a real file system

67

Evaluation

68

Evaluation questions

Does GoTxn reduce the proof burden?

What is assumed in the DaisyNFS proof?

Does DaisyNFS get acceptable performance?

69

DaisyNFS

GoTxn

Code

3,500

1,600 (Go)

GoTxn greatly reduces proof overhead

69

DaisyNFS

GoTxn

Code

3,500

1,600 (Go)

Proof

6,600

35,000 (Perennial)

GoTxn greatly reduces proof overhead

69

DaisyNFS

GoTxn

Code

3,500

1,600 (Go)

Proof

6,600

35,000 (Perennial)

GoTxn greatly reduces proof overhead

2x proof:code

20x proof:code

70

Assumptions in the DaisyNFS proof

Theorem: the server correctly
implements the NFS protocol.

daisy-nfsd

client

NFS protocol

Assuming correctness of:
• Unverified glue code
• NFS specification state machine
• Tooling
• GoTxn specification in Dafny

71

Bugs found in unverified code and spec

XDR decoder for strings can allocate 232 bytes

File handle parser panics if wrong length

Panic on unexpected enum value

WRITE panics if not enough input bytes

Directory REMOVE panics in dynamic type cast

The names “.” and “..” .. are allowed

RENAME can create circular directories

CREATE/MKDIR allow empty name

Proof assumes caller provides bounded inode

RENAME allows overwrite where spec does not

Didn’t find bugs in verified parts

71

Bugs found in unverified code and spec

XDR decoder for strings can allocate 232 bytes

File handle parser panics if wrong length

Panic on unexpected enum value

WRITE panics if not enough input bytes

Directory REMOVE panics in dynamic type cast

The names “.” and “..” .. are allowed

RENAME can create circular directories

CREATE/MKDIR allow empty name

Proof assumes caller provides bounded inode

RENAME allows overwrite where spec does not

Unverified glue
code

Missing from
specification

71

Bugs found in unverified code and spec

XDR decoder for strings can allocate 232 bytes

File handle parser panics if wrong length

Panic on unexpected enum value

WRITE panics if not enough input bytes

Directory REMOVE panics in dynamic type cast

The names “.” and “..” .. are allowed

RENAME can create circular directories

CREATE/MKDIR allow empty name

Proof assumes caller provides bounded inode

RENAME allows overwrite where spec does not

Unverified glue
code

Missing from
specification

72

Compare against Linux NFS server with ext4

 DaisyNFS

Linux NFS server local ext4

vs

*using data=journal

Linux NFS client
NFS

73

Performance evaluation setup

Hardware: i3.metal instance
36 cores at 2.3GHz

Benchmarks:

• smallfile: metadata heavy

• largefile: lots of data

• app: git clone + make

74

0.2

0.4

0.6

0.8

1

1.2

smallfile largefile app

Linux NFS DaisyNFS

Re
la

tiv
e

th
ro

ug
hp

ut

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

74

0.2

0.4

0.6

0.8

1

1.2

smallfile largefile app

Linux NFS DaisyNFS

Re
la

tiv
e

th
ro

ug
hp

ut

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

74

DaisyNFS gets good performance with a single client

0.2

0.4

0.6

0.8

1

1.2

smallfile largefile app

Linux NFS DaisyNFS

2100 files/s

250 MB/s

0.4 runs/s

Re
la

tiv
e

th
ro

ug
hp

ut

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

75

2800

5600

8400

11200

14000

4 8 12 16 20 24 28 32 36

number of clients

fil
es

/s

Run smallfile with many clients on an NVMe SSD

75

DaisyNFS can take advantage of multiple clients

2800

5600

8400

11200

14000

4 8 12 16 20 24 28 32 36

number of clients

fil
es

/s

DaisyNFS

Run smallfile with many clients on an NVMe SSD

75

DaisyNFS can take advantage of multiple clients

2800

5600

8400

11200

14000

4 8 12 16 20 24 28 32 36

number of clients

fil
es

/s

DaisyNFS

Linux NFS

Run smallfile with many clients on an NVMe SSD

76

DaisyNFS is a verified concurrent file system

Verified a file system combining automated and
interactive proofs

Built on a program logic for crashes + concurrency

Perennial

GoTxn

DaisyNFS

Specification
for transactions

77

Tej Chajed
tchajed@gmail.com

