ris workshop
May 24, 2023

% Formal verification of a
concurrent file system

Tej Chajed

VMware Research / UW-Madison

joint work wit
Nickolai Ze

N Joseph Tassarotti, Frans

dovich, Ralf Jung, and Mar

Kaashoek,

K Theng

Systems software is challenging to get right

Systems software is challenging to get right

Applications exercise all
corners of the system API

--

--

Runs on raw hardware:
crashes, concurrency, devices

Systems verification is becoming feasible

Microkernels (selL4, CertiKOS)

Cryptography libraries (Fiat Crypto, HACL™)

Distributed systems (lronFleet, Verdi)

File systems (FSCQ, BilbyFS)

This talk: veritying DaisyNFS

DaisyNFS is a verified, concurrent file system
Built on the Perennial logic, based on Iris

Combines PL and systems techniques

NFS is a good target for verification

1. Widely used

NFS L
=t] 2. Sophisticated implementations with
- =S concurrency & high performance

J

3. Bugs are costly, especially data loss

DaisyNFS implements an NFS server

DaisyNFS

| :Go compiler
client :

v
K__,v daisy-nfsd

NFS protocol

DaisyNFS implements an NFS server

DaisyN ES What is Go?
* Popular new language,

supported by Google
o Compiled, efficient, good
concurrency

] :Go compiler
Client :

v
_/v daisy-nfsd

NFS protocol

DaisyNFS is a verified NFS server

DaisyNFS

Theorem (informal): the server
correctly implements the NFS
protocol.

] :Go compiler
Client :

v
_/v daisy-nfsd

NFS protocol

Challenges in verifying a file system

Crashes Concurrency

REMOVE has several steps

func REMOVE(d 1no: uint64,

name: []byte) {

f := unlink(d 1no, name) [__

A
blocks := getBlocks(f) /!bEE..
free(blocks)

REMOVE has several steps

func REMOVE(d 1no: uint64,

name: []byte) {

<:>f = unlink(d 1no, name)

@blocks = getBlocks(f) I—/l_.bEEII

<:>free(blocks)
}

REMOVE has several steps

func REMOVE(d 1no: uint64,

name: [lbyte) {
<:>f = unlink(d 1no, name) |
<:>blocks = getBlocks(f) <:>

unlink

/....I

— Dlocks

<:>free(blocks)
}

REMOVE has several steps

func REMOVE(d 1no: uint64,

name: []byte) {
free

<:>f = unlink(d 1no, name)
@blocks = getBlocks(f) unllnk .X!bEE..

<:>free(blocks)
}

é Crashes create subtle bugs

func REMOVE(d 1no: uint64,

name: []byte) {
<:>f = unlink(d 1no, name)
e crash @)&

unlink

free

/....I

— Dlocks

10

é Crashes create subtle bugs

func REMOVE(d 1no: uint64,

name: []byte) {

<:>f = unlink(d 1no, name)
e CraSh

/....I

— Dlocks

crash leaks f's blocks

M————— e

| t!

t
gtz

Concurrency also creates subtle bugs

func REMOVE(d 1no: uint64,

name: []byte) {
@free

<:>f = unlink(d 1no, name)
/....I

<:>blocks = getBlocks(f) — blocks

<:>free(blocks)
}

11

| tz

t
gtt

Concurrency also creates subtle bugs

func REMOVE(d 1no: uint64,

name: []byte) {
@free

<:>f = unlink(d 1no, name)
O ———

— Dlocks

<:>blocks L= getBlocks(f)
,, — . Concurrent

@free blocks) append

}

11

t,
g ta'

i3

func REMOVE(d 1no: uint64,
name: []byte) {

<:>f = unlink(d 1no, name)
<:>blocks P = getBlocks(f)
<:>free blocks)

}

- concurrent

append

d ino

Concurrency also creates subtle bugs

free

/....I.I

— Dlocks ///f

4)

not all blocks are freed

N —

11

Crashes and concurrency bugs can be severe

Might leak resources
Might return the wrong user’s data

Might lose user data

12

Approach: verification-friendly system design

-
% DaisyNFS File-system code implemented with transactions

4
Transaction system gives atomicity
TXn
—r

13

Approach: verification-friendly system design

-
% DaisyNFS File-system code implemented with transactions

4
Transaction system gives atomicity
TXn
—r

¢,

Crashes g “) Concurrency

_

13

Approach: verification-friendly system design

-
% DaisyNFS File-system code implemented with transactions

° Sequential reasoning

_

4 . . .
Transaction system gives atomicity
GoTxn t,
———

s
Crashes g “) Concurrency

13

Approach: verification-friendly system design

-
% DaisyNFS File-system code implemented with transactions

° Sequential reasoning

_

-

\\“J Specification for transactions bridges the two
N

4
Transaction system gives atomicity
TXn
—r

t, ts
Crashes g “) Concurrency

13

Contributions

(-)

% DaisyNFS
\+) Specification

for transactions

@ GoTxn
_ Y

14

Contributions

(-)

% DaisyNFS
‘ Specification
Y for transactions

@ GoTxn
_ Y

Reduce proof effort with sequential
reasoning for a concurrent system

14

Contributions

(-)

% DaisyNFS
‘ Specification
\‘J for transactions

=

Reduce proof effort with sequential
reasoning for a concurrent system

Lifting specification for concurrent transactions

14

Contributions

(-)

% DaisyNFS
‘ Specification
k‘J for transactions

=

Reduce proof effort with sequential
reasoning for a concurrent system

Lifting specification for concurrent transactions

Abstract state for write-ahead logging
based on history of writes

14

Contributions

(-)

% DaisyNFS
‘ Specification
k‘J for transactions

‘1’ Perennial

Reduce proof effort with sequential
reasoning for a concurrent system

Lifting specification for concurrent transactions

Abstract state for write-ahead logging
based on history of writes

Perennial logic for concurrency
and crash reasoning

14

*

Specification
for transactions

15

Transactions automatically give atomicity

func Begin() *Txn
£ by *T cead Code between Begin() and
— Eti *Tiﬂg Wf‘?.té.z.?.) Commit () is atomic both on crash

and to other threads
func (tx *Txn) Commit()

16

Specifying a transaction system

TX
TX

v = tx.Read(0) o—» (0
tx.Write(1l, v)

Spec (GoTxn API)

Specifying a transaction system

TX ;
v := tx.Read(0) O;’O
tx.Write(1l, v)
Spec (GoTxn API)
Read Write
O———»0O———»0O

Code (GO)

Specifying a transaction system

X .
v := tx.Read(0) OoO——p0

tx.Write(1l, v)
(Spec (GoTxn API) \

Every actual ...should be.a.”OV.VEd
execution... by the specification

Read Write
‘____, O———»O—» 0O ///

Code (Go)

Specitying crash atomicity for transactions

tx O (noop)
X

v = tx.Read(0) v 00—y
tx.Write(1l, v)

Spec (GoTxn API)

Specitying crash atomicity for transactions

tx O (noop)
X

v = tx.Read(0) v O—m—————p
tx.Write(1l, v)

Spec (GoTxn API)

O—>0O0—0
O—>0O—>0O—>0O0—0
O—>0O—>0O0—>0O0—>0—0

Code (GO)

Specitying crash atomicity for transactions

TX

v := tx.Read(0)
tx.Write(1l, v)

|

Every crashing
execution...

N

O (noop)

v O— >

TX

Spec (GoTxn API)

O—>0O0—0

O—>0O—>0O—>0O0—0
O—>0O—>0O0—>0O0—>0—0

Code (GO)

\

...should be allowed
by the specification

/

18

Specitying sequential transactional API

tx := Begin()

v := tx.Read(0)
tx.Write(1l, v)

tx.Write(2, v)

tx.Commit()

19

Specitying sequential transactional API

I

tx := Begin()

v := tx.Read(0)
tx.Write(1l, v)
tx.Write(2, v)
tx.Commit()

v | v | v

19

Specitying sequential transactional API

I

tx := Begin()
v := tx.Read(0)
tx.Write(1l, v)

tx.Write(2, v)
tx.Comm1it()

what is the
state here?

v | v | v

19

Specitying sequential transactional API

I

tx := Begin()
v = tx.Read(0)
tx.Write(1l, v) how to capture that crash

tx.Write(2, v) results in initial or final state?
tx.Commit()

what is the
state here?

v | v | v

19

Specitying sequential transactional API

disk V | | |
tx := Begin()
v := tx.Read(0)
tx.Write(l, v)

tx.Write(2, v)
tx.Commit ()

disk v‘v‘v‘

20

Specitying sequential transactional API

disk | | |

tx := Begin()
v := tx.Read(0)
tx.Write(l, v)

disk | |

X v|v| |

tx.Write(2, v)
tx.Commit ()

disk ‘v‘v‘

-

—

~

transaction’s
INn-memory view

—/

Specitying sequential transactional API

disk | | |

tx := Begin()

v := tx.Read(0)
tx.Write(l, v)
tx.Write(2, v)

disk | |

X v‘v‘v‘

tx.Comm1it()

disk ‘v‘v‘

21

Separation logic to specity Commit without
crashes

tx.Comm1it()

post { disk | v | Y |

22

Perennial logic adds crash conditions

‘CZCCKZ, SOSP '15]
'CTTIKZ, OSDI '21]

tx.Commit()

post {d'Sk v|v|v| | }

Perennial logic adds crash conditions

‘CZCCKZ, SOSP '15]
'CTTIKZ, OSDI '21]

pre {

post { disk
v
crash disk
v

tx.Commit()

Generalizing to include concurrency

tx1 H

o0 O
VvV O O—>0

Spec (GoTxn API)

24

Generalizing to include concurrency

tx1 H

|

Every actual
execution...

N

o—>0 O
vV O Oo—>0
Spec (GoTxn API)

o +O—=>0—>0 O—>0—>0 0O
O—>0 O—=>0—>0 O—>0 0O
O—>0O0—>0 O +O—=>0—>0 0O

Code (GO)

\

...Is allowed by the
(atomic) specification

/

24

Challenge: specitying concurrent transactions

tx1l := Begin()

v := tx1.Read(0) tx2 := Begin()
tx1.Write(1l, v) tx2.Write(4, data)
tx1l.Write(2, v) tx2.Commit()

tx1.Commit()

Challenge: specitying concurrent transactions

s

tx1l := Begin()
v := tx1.Read(0)
tx1.Write(1l, v)

tx2 := Begin()
tx2.Write(4, data)
tx2.Commit()

\Y; ‘ ‘ ‘ ‘ data

txl.Write(2, v)
tx1.Commit()

20

Challenge: specitying concurrent transactions

s

tx1l := Begin()
v := tx1.Read(0)
tx1.Write(1l, v)

tx2 := Begin()
tx2.Write(4, data)
tx2.Commit()

4)

How to reason about
tx1.Write(2, v) transactions separately?
tx1.Commit () — —

\Y; ‘ ‘ ‘ ‘ data

|[dea: lifting-based specification
[CTTJKZ, OSDI"21]

s I

tx1l := Begin()
v := tx1l.Read(0) tx2 := Begin()

tx1l.Write(1l, v) tx2.Write(4, data)
tx1l.Write(2, v)

disk Vv | Y | Vv | |data

27

|[dea: lifting-based specification

[CTTJKZ, OSDI "21]
- |

s
I

tx1l := Begin()

v := tx1.Read(0)
tx1.Write(1l, v)
tx1l.Write(2, v)

| |

“Lift” ownership of

disk into transactions
\ S — ——

B I N

tx2 := Begin()
tx2.Write(4, data)

disk v|v|v|

| data

27

|[dea: lifting-based specification
[CTTJKZ, OSDI"21]

disk [, ‘ ‘ ‘ “Lift” ownership of

disk into transactions
I — ——

y

/
B I N

tx1l := Begin()
v := tx1l.Read(0) tx2 := Begin()

tx1l.Write(1l, v) tx2.Write(4, data)
tx1l.Write(2, v)

disk Vv | Y | Vv | |data

27

|[dea: lifting-based specification
[CTTJKZ, OSDI"21]

disk [, ‘ ‘ ‘ “Lift” ownership of

disk into transactions
 — R

y

/
B I N

tx1l := Begin()
v := tx1l.Read(0) tx2 := Begin()

tx1l.Write(1l, v) tx2.Write(4, data)
tx1l.Write(2, v)

disk Vv | Y | Vv | |data

27

|[dea: lifting-based specification

[CTTJKZ, OSDI "21]
s I

/

“Lift” ownership of

disk into transactions
I — ——

B I N

tx1l := Begin()
v := tx1l.Read(0) tx2

= Begin()

tx1l.Write(1l, v) tx2.Write(4, data)

tx1l.Write(2, v)

tx1.Commit () tx2.Commit ()

\ /
disk Vv | Y | Vv | |data

27

Separation logic describes lifting

-

logical assertions

~

aer bo aer b
disk 04
~— -_—

28

Commit spec captures atomicity
[CTTJKZ, OSDI'21]

29

Commit spec captures atomicity
[CTTJKZ, OSDI"21]

a —

29

Commit spec captures atomicity

[CTTJKZ, OSDI "21]
|

tx.Commit ()

29

Commit spec captures atomicity
[CTTJKZ, OSDI'21]

(i

tx.Commit()

c—m

c_Z|—>

V /
| disk

.
disk

—)

-

~

crash condition is atomic

S—

29

Lifting specification describes the GoTxn AP|

[CTTJKZ, OSDI"21]

{

ar— Vv
X

tx.Read(a)

X

}

~

_

|
{ -
-

Cll—)VO

tx.Write(a, v')

_}
j
}

~

_

30

Complete GoTxn specification

tx1 H

o—»0 O
O O————»0O
O—————»0

O O

O (noop)

Spec (GoTxn API)

31

Complete GoTxn specification

tx1 H

|

Every actual
execution...

N

o0 O
O o—»0
o—>0
O O
O (noop)

Spec (GoTxn API)

o +O—=>0—>0 O—>0—>0 0O
O—>0 O—=>0—>0 O—>0 0O
O—>0O0—>0 O +O—0

O +O—>0—0

Code (GO)

\

...Is allowed by the
(atomic) specification

/

31

Technical note: Cog proof shows refinement

. Goose<Di1isk>

€
< €, : Goose<Txn>

32

Technical note: Cog proof shows refinement

tx := Begin()
v := tx.Read(0)
tx.Write(l, v)

.+ Goose<Disk> tx. Commit()

€
< € : Goose<Txn> \ atomically {
v « Read(0);
Write(1, v);
¥

32

Summary of specitying transaction system

Perennial logic supports specitying and proving
crash and concurrent behavior

Lifting specification describes concurrent
transactions

33

Perennial

34

Key judgment: Hoare “quadruple”

Pye Q)]
\

“crash condition”

If we halt € during its execution, T will hold

39

Ownership with crashes is tricky

Thread _ock
OWnSs; Invariant:
lock() O P)
A"x’
P*S
()
?
@,

360

Crash locks support locking durable state

Thread Crash _ock Crash
OWnNS: condition: invariant; invariant;
lock() P R A\) Sc
P e
P*S* R*S*
()
O*S. R*S,. ..
unlock() | T el .
O S 5.

37

Other challenges

Prove recovery is idempotent
Durable linearizability specifications

Connection to Go code

33

Roadmap

-

% DaisyNFS File-system code implemented with transactions

_

-,
&+J Specification Specification that bridges the two

for transactions
_

[: . .
@ . Transaction system gives atomicity
XN

L ¢

— Crashes g “) Concurrency

Roadmap

DaisyNFS

Specification
for transactions

@ GoTxn

()

File-system code implemented with transactions

\— _J

()

Specification that bridges the two

_ W,

[. . .
Transaction system gives atomicity

L ¢

é Crashes 2“ Concurrency

~—

39

Implementing GoTxn

tx := Begin()
v := tx.Read(0
tx.Write(1l, v)
tx.Write(2, v)
tx.Commit ()

)

41

Implementing GoTxn

tx := Begin(
v := tx.Read
tx.Write(1,
tx.Write(2,
tx.Commit ()

N

)
(0)
V)
V)

~

—

Write-ahead logging é
makes writes crash-safe

~

—

41

Implementing GoTxn

tx := Begin(
v := tx.Read
tx.Write(1,
tx.Write(2,
tx.Commit ()

N

)
(0)
V)
V)

~

4 EoL)
Two-phase locking gt» \
handles concurrency

I

~

Write-ahead logging é
makes writes crash-safe
e -/

41

Write-ahead logging AP|

func Multiwrite(ws []Update)
type Update struct {

addr uinto64

block []byte

}

func Read(a uint64) []byte
func Flush()

Write-ahead log (WAL)

42

Multi-block atomicity come from circular log

start end
= =3

0 | 2 3 4 5

43

Multi-block atomicity come from circular log

O,

start end
= =6

0 | 2 3 4 5

44

Multi-block atomicity come from circular log

start end
= =6
@ 0 [? 3 4 5

44

Crash never leaves a partial multiwrite

start end
=1 =3
@/ 0 1 2 3 4 5

45

Crash never leaves a partial multiwrite

start end
=1 =3
®/ 0 [% 3 4 5

lcrash + recovery

start end
=1 =3

0 1 2 3 4 5

45

Writing, logging, and installation are concurrent

l multiwrite

ll
* *

ll

iN-memory buffer

k’ED:-EID ENEN - B

fixed-size log data

46

Crashes are complicated in the WAL

l multiwrite

ll
* *

.
--

in-memory buffer

km IEEE - =

fixed-size log data

47

Crashes are complicated in the WAL

multiwrite [)
l buffered writes

are |lost
o= i

.
--

in-memory buffer

km IEEE - =

fixed-size log data

Crashes are complicated in the WAL

multiwrite [)
l buffered writes

are |lost
o= L

.
--

iN-memory buffer

%m IEEE - =

fixed-size log data

e A
partially logged

writes are lost
N —

Crashes are complicated in the WAL

l multiwrite

III
*

-

buffered writes

~

are |lost

.
--

&

m IIII I

iN-memory buffer

fixed-size log

-

N

\
partially logged

writes are |lost
-/

-

will re-install these
blocks (safely)

data

~

47

l[dea: model WAL as a history of multiwrites

physical
state

in-memory buffer

m HEEN - =

fixed-size log data

48

l[dea: model WAL as a history of multiwrites

multiwrites abstract
state

Iinvariant

physical
state

in-memory buffer

m HEEN - =

fixed-size log data

48

l[dea: model WAL as a history of multiwrites

multiwrites abstract

Iatest/A

Iinvariant

physical
state

in-memory buffer

m HEEN - =

fixed-size log data

48

l[dea: model WAL as a history of multiwrites

multiwrites abstract
state

installedj Ioggedj

Iinvariant

physical
state

in-memory buffer

m HEEN - =

fixed-size log data

48

History abstract state crisply expresses atomicity

multiwrites abstract

installedj Ioggedj Iatest/A

Iinvariant

physical
state

in-memory buffer

m HEEN - =

fixed-size log data

49

History abstract state crisply expresses atomicity

multiwrites abstract

installedj IoggedjA

latest

Iinvariant

physical
state

in-memory buffer

m HEEN - =

fixed-size log data

49

Pointers can all advance concurrently

multiwrites

R L L

installed/A Ioggedj Iatest/A

50

Pointers can all advance concurrently

multiwrites
installed/A Ioggedj Iates.t/A
advanced by advanced by advanced by

installer logger writes

50

Durable bound hides concurrency for rest of proof

multiwrites

I = N

durable_bound/A

51

Durable bound hides concurrency for rest of proof

multiwrites

I = N

durable_boundj

Invaria ntI

multiwrites

N = N

installedj Iatestj
Iogged/A

51

Durable bound hides concurrency for rest of proof

multiwrites

I = N

durable_boundj

Invaria ntI

multiwrites

I N o

installed /A logged /A Iatestj

51

Future work

Can we make this proof less messy?

Can we make it easier to improve the logging design?

52

Future work

Ca

Ca

@ vim invariant.v ~/c/p/s/p/wal

& Lnvariant.v o

v Record wal_names := mkWalNames

v { circ_name: circ_names;
CS_name : gname;
txns_ctx_name : gname;
txns_name : gname;
(* - nwename Leing installed staxt _txn to inatalled _txn since they aze now always the 3ame *)
being _installed_start_txn_name : gname;
already_installed_name : gname;
diskEnd_avail_name : gname;
start_avail name : gname;
stable_txn_ids_name : gname;
logger_pos_name : gname;
(I this i3 the Loggen's next tnansaction id? *)
logger_txn_id_name : gname;

83 I (* this (3 the pos/txnid captured by the installen when it dtants insatalling *)

(* this (3 used fox the Lock invariant *)
installer_pos_mem_name : gname;
installer_txn_id_mem_name : gname;
(* this (3 used fon the wal invaxziant *)
installer_pos_name : gname;
installer_txn_id_name : gname;
(* this (3 the in-memony di3kEnd (not the on-di3dk di3kEnd) *)
(* it's used to Ureak up has_updates fox the cinculax queue 30 that the installen can Advance Jjuit to
that point *)
diskEnd_mem_name : gname;
diskEnd_mem_txn_id name : gname;
installed_pos_mem_name : gname;
installed_txn_id_mem_name : gname;
(* the on-disk diskEnd foxn the intenface invaxiant inidtead of the Lock invariant *)
diskEnd_name : gname;
diskEnd_txn_id_name : gname;
base_disk_name : gname;

}.

} b master @ cog

52

Future work

Can we make this proof less messy?

Can we make it easier to improve the logging design?

52

Summary of proving the WAL in GoTxn

Wikurtes Abstract state for write-ahead logging based on

LLJ.EDIID

id s history of multiwrites and internal pointers

Lower bound on durable state hides concurrency

53

Roadmap

% DaisyNFS

Specification

\+J for transactions
@ GoTxn

-
File-system code implemented with transactions

a Sequential reasoning
-

-

Specification that bridges the two

_

[. . ..
Transaction system gives atomicity

¢,

ts
é Crashes g Concurrenc

_

54

Roadmap

% DaisyNFS

Specification
for transactions

TxXn

4 w
File-system code implemented with transactions
° Sequential reasoning

N y

-)
Specification that bridges the two

_ ,
Transaction system gives atomicity -

Crashes Concurrenc
_ J

54

2 DaisyNFs

DaisyNFS is a verified file system on top of GoTxn
(CTTKZ, O5SDI'22]

GETATTR, SETATTR, READ, WRITE,
- CREATE, REMOVE, MKDIR, RENAME,

4)

.,s”" LOOKUP, READDIR,
% DaisyNFS FSINFO, PATHCONF, FSSTAT
NFS
- Y,
a ™ |
func Begin() *Txn
TXn
---------- func (tx *Txn) Read(..)
- *J func (tx *Txn) Write(..)

func (tx *Txn) Commit()
transactions

Challenges

Specification: formalizing NFS
Proof: leveraging atomicity from GoTxn

Implementation: fitting operations into transactions

57

Specification: how to formalize NFS (RFC 1813)?

INFORMATIONAL

Network Working Group B. Callaghan
Request for Comments: 1813 B. Pawlowski
Category: Informational P. Staubach
Sun Microsystems, Inc.

June 1995

NFS Version 3 Protocol Specification
Status of this Memo

This memo provides information for the Internet community.
This memo does not specify an Internet standard of any kind.
Distribution of this memo is unlimited.

IESG Note

Internet Engineering Steering Group comment: please note that
the IETF 1is not involved in creating or maintaining this
specification. This is the significance of the specification
not being on the standards track.

Abstract

This paper describes the NFS version 3 protocol. This paper 1is
provided so that people can write compatible implementations.

53

DaisyNFS's top-level specification

MKDIR(...) H

NES

MKDIR

O

59

DaisyNFS's top-level specification

MKDIR(...) H

Every daisy-nfsd concurrent
execution...

NES

MKDIR

O

Oo—»0 +O—=>0—>0 O—>0 0

GO

\

should follow (atomic)
NFS specification

/

59

Proof: compose GoTxn and DaisyNFS proofs

MKDIR(...) H

daisy-nfsd concurrent
execution

O—>O—>0O—>0 O O

GoTxn AP

Oo—»0 O—=>0—>0 O—>0 0

GO

\

transactions are atomic

(GoTxn proof)

/

60

Proof: compose GoTxn and DaisyNFS proofs

MKDIR(...) H

daisy-nfsd concurrent
execution

MKDIR

O O
NFS
O—>0O—>0—>0 0O O
GoTxn AP|

Oo—»0 O—=>0—>0 O—>0 0

GO

\

sequential transactions
are correct
(DaisyNFS proof)

/
\

transactions are atomic

(GoTxn proof)

/

60

Transactions are proven with sequential reasoning

MKDIR spec spec
N O e 2 O O
GoTxn O—>»O—»0O0—>0—+0 O

MKDIR code code

o1

Transactions are proven with sequential reasoning

MKDIR spec spec
NFS O————————»0 O
INvariant
GoTxn O—VO—bO—VO O O

MKDIR code code

o1

Transactions are proven with sequential reasoning

MKDIR spec spec
NFS O————————>0 O
iNnvariant °
Sequential reasoning
is highly automated
GoTxn O—»O——>»0O0—>0—+0 O

MKDIR code code

o1

Future work: verity entirely in Iris

Can we use logical atomicity (with crashes) for
transaction spec?

Can we do the proof with low overhead in Iris?

62

Summary

Sequential reasoning for concurrent system
Formalized RFC 1813

Fit operations into fixed-size transactions

63

Implementation: code and verification

é)
% DaisyNFS
- W,

Dafny 3,500 lines

4)

@ TXn

- w,

1,600 lines

Implementation: code and verification

é)
% DaisyNFS
_ W,

Dafny 3,500 lines

~

.
@ GoTxn
_ J

1,600 lines

Proof of GoTxn

a4 N
‘T Perennial
_ Y,

25,000
lines (Coq)

oz

Implementation: code and verification

é)
% DaisyNFS
_ W,

Dafny 3,500 lines

~

.
@ GoTxn
_ J

1,600 lines

Goose

Proof of GoTxn

r ----------------------------

model of code

(T Perennial 25,000
erennia lines (Coq)

oz

Implementation: code and verification

é)
% DaisyNFS
_ W,

Dafny 3,500 lines

~

.
@ GoTxn
_ J

1,600 lines

Goose

Proof of GoTxn

(T Perennial 25,000
erennid lines (Coq)

’

Crashes

3
gtz

Concurrency

oz

Implementation: code and verification

560 lines to specity NFS

é)
% DaisyNFS
_ W,

Dafny 3,500 lines

>

~

.
@ GoTxn
_ J

1,600 lines

Goose

Proof of GoTxn

Proof of DaisyNFS

(T Perennial 25,000
erennia lines (Coq)

’

Crashes

3
2‘6;

Concurrency

oz

Implementation: code and verification

560 lines to specity NFS

é)
% DaisyNFS
_ W,

Dafny 3,500 lines

>

~

.
@ GoTxn
_ J

1,600 lines

Goose

Proof of GoTxn

Proof of DaisyNFS

(T Perennial 25,000
erennia lines (Coq)

Sequential reasoning

’

Crashes

3
2‘6;

Concurrency

oz

Implementation: code

S aisyvrs
.)
I indirect blocks
two-phase locking
4 N
--
GoTXn
_) sub-block objects
write-ahead log

Implementation: code

- A Limitations

\) No access control
I indirect blocks No paged READDIR
two-phase locking

é N T

= --
GoTXn

_) sub-block objects

M write-ahead log

Implementation: code

4 A Hmitations
g) No access control

I indirect blocks No paged READDIR

IS t\o-phase locking Limitations
g A Synchronous commit

journaling T
@ GoTXn Assume disk is synchronous

L) sub-block objects

I write-ahead log

DaisyNFS is a real file system

ddaisy-nfsd on ¥ main
19:11 > ||

60

\daisy—nfsd on ¥ main
19:11 > |

6/

Evaluation questions

Does GoTxn reduce the proof burden?
What is assumed in the DaisyNFS proof?

Does DaisyNFS get acceptable performance?

63

GoTxn greatly reduces proof overhead

Code

% DaisyNFS 3,500
@ GoTxn 1,600 (Go)

69

GoTxn greatly reduces proof overhead

Code Proof
% DaisyNFS 3,500 6,600

@ GoTxn 1,600 (Go) 35,000 (Perennial)

69

GoTxn greatly reduces proof overhead

Code

% DaisyNFS 3,500

@ GoTxn

1,600 (Go)

Proof .
6,600 2x proof:code

—
35,000 (Perennial)

20x proof:.code

S I

69

Assumptions in the DaisyNFS proof

client

A

NFS protocol

v

dalisy-nfsd

Assuming correctness of:

» Unverified glue code

* NFS specification state machine
* Tooling

» GoTxn specification in Dafny

Theorem: the server correctly
implements the NFS protocol.

70

Bugs found in unverified code and spec

XDR decoder for strings can allocate 232 bytes

File handle parser panics if wrong length

-

_

Didn't find bugs in verified parts

~

bytes

mic type cast

jd

RENAME can create circular directories

CREATE/MKDIR allow empty name

Proof assumes caller provides

bounded inode

RENAME allows overwrite where spec does not

/1

XDR decoder for strings can allocate 232 bytes
File handle parser panics if wrong length
Panic on unexpected enum value

WRITE panics if not enough input bytes
Directory REMOVE panics in dynamic type cast
The names“.”and . ."” are allowed

RENAME can create circular directories
CREATE/MKDIR allow empty name

Proof assumes caller provides bounded inode

RENAME allows overwrite where spec does not

Bugs found in unverified code and spec

Unverified glue
code

Missing from
specification

/1

XDR decoder for strings can allocate 232 bytes
File handle parser panics if wrong length
Panic on unexpected enum value

WRITE panics if not enough input bytes
Directory REMOVE panics in dynamic type cast
The names“.”and . ."” are allowed

RENAME can create circular directories
CREATE/MKDIR allow empty name

Proof assumes caller provides bounded inode

RENAME allows overwrite where spec does not

Bugs found in unverified code and spec

Unverified glue
code

Missing from
specification

/1

Compare against Linux NFS server with ext4

"

& DaisyNFs

NFS
Linux NFS client P > VS
Linux NFS server _’l local ext4

*using data=journal

(2

Performance evaluation setup

Hardware: i3.metal instance
36 cores at 2.3GHzZ

Benchmarks:
e smallfile;: metadata heavy
o |argefile: lots of data
* app:git clone + make

73

Relative throughput

Linux NFS I DaisyNFS

1.2

0.8
0.6
0.4
0.2

smallfile largefile app

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

74

Relative throughput

Linux NFS I DaisyNFS

1.2

0.8
0.6
0.4
0.2

smallfile largefile app

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

74

DaisyNFS gets good performance with a single client

Linux NFS I DaisyNFS

Relative throughput

smallfile largefile app

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

74

14000 -

11200 -

3400 -

files/s

5600 -

2800 -

number of clients

Run smallfile with many clients on an NVMe SSD

7

DaisyNFS can take advantage of multiple clients

14000 -
11200 -

3400 -

files/s

DaisyNFS
5600

2800 -

4 38 12 16 20 24 28 32 36

number of clients

Run smallfile with many clients on an NVMe SSD

7

DaisyNFS can take advantage of multiple clients

14000 -
11200 -

3400 -

files/s

DaisyNFS
5600

2800 -

4 38 12 16 20 24 28 32 36

number of clients

Run smallfile with many clients on an NVMe SSD

7

DaisyNFS is a verified concurrent file system

4)

% DaisyNFS
‘ Specification
Y for transactions
@ TXn
———

_ Y,

a)
C" Perennial

_ Y,

Verified a file system combining automated and
interactive proofs

Built on a program logic for crashes + concurrency

/0

Tej Chajed
tchajed@gmail.com

I

