Formalizing, Verifying and
Applying ISA Security Guarantees
as Universal Contracts

R Sander Huyghebaert

K g SOFTWARE Steven Keuchel
‘WB : L ANGU AGES Coen De Roover 0 N
| | KU LEUVEN Dominique Devriese

FLANDERS

Qutline

Introduction
Universal Contracts
MinimalCaps

RISC-V PMP

Conclusion

#

x86

Introduction

AN

Hardware

/

ARMvS8-A

|
_

RISC-V

e

N\

Software

Traditionally:
- Long manuals
- Prose/Pseudocode

Recently:
- Formal & executable spec

ARMV8-A (CMSJF,P,QM) CHERIRISC-V CHERI-MIPS
ASL AsL sai Sail

yasl_to_sail yasl_to_sail

ARMvE-A Marelo, RISC-V MIPS
Sail Sail Sail

suoniuyaq vs|

Sequential Execution Documentation
: : fragments

Sequential
Emulator (C)

Sequential

Emulator (OCaml) isla SMT

symbolic evaluator T |sabelle :

. — Voo V... \

isla—axiomatic RMEM

) : 1 concurrency concurrency
Generation ~: 5 tool tool

* * ELF model
: Lem

S10BJILY palelousn

i Concurrency models Concurrency models :
i Axiomatic, Cat Operational, Lem :

Concurrent Execution

Security Guarantees

“Only privileged software running at CPL=0 can manage the TLBs.”

“Page translation is controlled by the PG bit in CRO (bit 31). When
CRO.PGisset to 1, page translation is enabled.”

“Most instructions used to access these resources are privileged and can only
be executed while the processor is running at CPL=0, although some
instructions can be executed at any privilege level’”

- AMD64 Architecture Programmer’s Manual Volume 2: System Programming

Security Guarantees
Current Approach

- Informal ISA specs offer promise of security guarantee
- “Security feature X offers Y/ prevents attack Z”
- Holds for future updates to the ISA
Formal ISA specs lack security specifications
- Focus is on operational specification

Universal Contracts
Motivation

erified
- Security guarantees should be against
- Part of ISA specification
- Formal
- Verifiable against operational spec
- Specific enough for reasoning
- Not overspecified
- Optimizations and extensions should be possible
- Mechanized

- Current approaches do not meet these requirements

Universal Contracts
Concept

{ P }JASM code

Formal security guarantee...

e ..expressed asacontract
o Upper bound of the authority

Holds for any code

o Sail
o Fetch-Decode-Execute Cycle

(Q}

Verifiable against operational specification of ISA

Universal Contracts
Concept

{ P }/ASM code

Formal security guarantee...

... expressed as a contract
o Upper bound of the authority

Holds for any code

(Q}

Verifiable against operational specification of ISA

o Sail
o Fetch-Decode-Execute Cycle

Verify software using

Implements

Verify ISA offers

Universal Contracts
Concept

{ P }|/ASM codefl O }

Formal security guarantee...
e ..expressed asacontract
o Upper bound of the authority
Holds for any code Verify software using
Verifiable against operational specification of ISA :
o Sail
o Fetch-Decode-Execute Cycle Verify ISA offers

Implemtlnts

10

Qutline

MinimalCaps
RISC-V PMP

Conclusion

11

#

MinimalCaps

12

\ Traditional Machine

pointer

13

\ The MinimalCaps Capability Machine

begin cursor end

Capability

perm € {O, E, R, RW}
cursor : address
begin :address
end :address

14

The MinimalCaps Capability Machine

begin cursor end

Hardware Guarantees
e Capabilities are unforgeable
e Permissions are checked
e Capability manipulation is safe

Capability

perm € {O, E, R, RW}
cursor : address
begin :address
end :address

15

N\

Capability Safety

Universal Contract

{(2 c,pcc %k V(c) k¥ CorrectPC(c)) * (%
fdeCycle
{T}

r € GPR

CorrectPC(p, b, e, a)=a € [b,e) % RCp

Jw.rew ¥ Yw))}

16

Capability Safety

Logical Relations

Value Relation V: (Integer + Capability) -> iProp

(V(2), V0, -, - -) = True (zis an integer)
VIE, b, e, a) =>0 &(R, b, e, aq)
A V(R, b, e,-) =¥ ok Iwarwk V)
. VIRW,b,e,-) =% 3 w,a~>w ¥ V(W)

a € [b,le]

Expression Relation € : (Integer + Capability) -> iProp

e(w) =(pc~w % (% oor
wp fdeCycle T

Sw.row Rk Yw))) -k

Capab

ility Safety

Logical Relations

Value Relation V: (Integer + Capability) -> iProp

Viw) <

(V(2), V0, -, - -) = True (zis an integer)

V(E, b, e, a) => 0 &(R, b, e, a)
V(R, b, e, -) =*ae[b7e] I w,a~w ¥ VW)
L VIRW, b,e,-) = *ae[b’e] I w,a~w ¥ Vw)

Expression Relation € : (Integer + Capability) -> iProp

g(w) =(pc~w %k (%

r € GPR

wp fdeCycle T

3 w.r>w ¥ P(w))) -%k

18

Capability Safety

Logical Relations

Value Relation V: (Integer + Capability) -> iProp

-

W) 9 DR bre.)

L VIRW, b, e, -)

_ %
- %

a € [b,

a € [b,

, dw,arw ¥ Y

L 3 w,arw ¥)
Invariants
ea

Expression Relation € : (Integer + Capability) -> iProp

19

Capability Safety

Logical Relations

Value Relation V: (Integer + Capability) -> iProp

7

Viw) 4 VIE, b, e, a) =>n &(R, b, e, a)

~

Expression Relation € : (Integer + Capability) -> iProp

e(w) =(pc~w % (% oor
wp fdeCycle T

Sw.row Rk Yw))) -k

20

N\

Capability Safety

Step Contract

{(2 c,pcc %k V(c) k¥ CorrectPC(c)) * (%

step
{(F c,pcPc *k (Vc)VeE) *k (k

r € GPR

CorrectPC(p, b, e, a)=a € [b,e) % RCp

Jw.rew ¥ Yw))}

r € GPR

Aw.rew ¥ Vw)}

21

Verified Symbolic Execution wi

Katamaran Rl e
Semi-automatic separation logic verifier

P i oo I vervcsion conariors
-

: Iris Model Lemma Verification
uSail Fun. Def.,

|
Operational Semantics

. User Spec . Katamaran Framework

. User Proofs

22

N\

Veritying MinimalCaps’ Security Guarantees

{(3 c,pcrc %k V(c) ¥ CorrectPC(c)) * (¥ __.
function exec_sd(rs : GPR, rb : GPR, immediate : int) : bool :=

let base cap :=callread reg cap rbin

let (perm, beg, end, cursor) := base_cap in

let c := (perm, beg, end, cursor + immediate) in

let b := call write_allowed perm in

assertb ;;

let w ;= call read _regrsin

use lemma (subperm_not E RW perm) ;;

use lemma (move_cursor base _cap c) ;;

call write._ memcw ;;

call update pc ;; true

{(F c,pc~c*k (Vc)VE)) *k (kK Aw.rew ¥ V(w))}

r € GPR

Jw.rew ¥ Y(w))}

23

N\

{(p=RVp=RW) % pCp’ subperm not Epp’'{p’#E |

Veritying MinimalCaps’ Security Guarantees

{(3 c,pcrc %k V(c) ¥ CorrectPC(c)) * (¥ ___. 3 wW.r>w ¥ V(w))}
function exec_sd(rs : GPR, rb : GPR, immediate : int) : bool :=

{rb ~» base_cap % V(base_cap) ¥ rs~>w ¥ Y(w) ...}

use lemma (subperm_not E RW perm) ;;

{rb~ base cap % V(base cap) ¥ rs~>w ¥ V(w) ®¥ perm #E ...}
use lemma (move_cursor base cap c) ;;

call write._ memcw ;;

call update pc ;; true

{(Zc,pc~c*k (Vc)Ve(C))) * (*k Jw.rew ¥ Yw))}

r € GPR 24

{V(p, b, e, a) * p#E | move_cursor (p, b, e, a) (p, b, e, a) | V(p, b, e, a) ¥ V(p, b, e, a) }

\ Veritying MinimalCaps’ Security Guarantees

{(3 c,pcrc %k V(c) ¥ CorrectPC(c)) * (¥ ___. 3 wW.r>w ¥ V(w))}
function exec_sd(rs : GPR, rb : GPR, immediate : int) : bool :=

{rb ~ base_cap ¥ V(base_cap) ¥ rs>w ¥ Y(w) ...}

use lemma (subperm_not E RW perm) ;;

use lemma (move_cursor base _cap c) ;;

{ rb —» base_cap ¥ V(base_cap) ¥ rs > w ¥ Y(w) ¥ V(c) ...}
call write._ memcw ;;

call update pc ;; true

{(Fc,pc~c*k (Vc)VEC))) * (¥ _ .. T W.re>w ¥k Vw))}

25

{V(c) * V(w) } write_memcw {V(c) *¥ V(w) |

\ Veritying MinimalCaps’ Security Guarantees

{(3 c,pcrc %k V(c) ¥ CorrectPC(c)) * (¥ ___. 3 wW.r>w ¥ V(w))}
function exec_sd(rs : GPR, rb : GPR, immediate : int) : bool :=

{rb ~ base_cap ¥ V(base_cap) ¥ rs>w ¥ Y(w) ...}

use lemma (subperm_not E RW perm) ;;

use lemma (move_cursor base _cap c) ;;

{ rb —» base_cap ¥ V(base_cap) ¥ rs > w ¥ Y(w) ¥ V(c) ...}
call write._ memcw ;;

call update pc ;; true

{(Fc,pc~c*k (Vc)VEC))) * (¥ _ .. T W.re>w ¥k Vw))}

26

{V(c) * V(w) } write_memcw {V(c) *¥ V(w) |

\ Veritying MinimalCaps’ Security Guarantees

{(3 c,pcrc %k V(c) ¥ CorrectPC(c)) * (¥ ___. 3 wW.r>w ¥ V(w))}
function exec_sd(rs : GPR, rb : GPR, immediate : int) : bool :=

{rb ~ base_cap ¥ V(base_cap) ¥ rs>w ¥ Y(w) ...}

use lemma (subperm_not E RW perm) ;;

use lemma (move_cursor base _cap c) ;;

{ rb ~» base_cap ¥ V(base_cap) ¥ rs > w ¥ V(w) ¥ |V(c)...}
call write._ memcw ;;

call update pc ;; true

{(Fc,pc~c*k (Vc)VEC))) * (¥ _ .. T W.re>w ¥k Vw))}

27

RISC-V PMP

28

RISC-V

- Free, open, extensible ISA

- 32-bitinstructions

- Wefocus on RV32I
Official RISC-V spec
But with PMP support
U and M modes

- Simplifications
Limited PMP entries

Extension Description

I Integer

\% Integer Multiplication and Division

A Atomics

F Single-Precision Floating Point

D Double-Precision Floating Point

C 16-bit Compressed Instructions

Xext Non-Standard User-Level Extension

29

RISC-V PMP

Physical Memory Protection

- Optional

- Grant permissions to S and U modes
- Bydefault none

- Revoke permissions from M mode
- By default full

- PMPviolations => trap

- Load access fault, store access fault, ...
- Exception

- Upto 64 PMP regions

- Statically prioritized
- Lowest number has highest priority

Tra
RISC-V PMP ==

Physical Memory Protection Interrupt Exception

External asynchronous
event

- Optional
- Grant permissions to S and U modes

- Bydefault none
- Revoke permissions from M mode

- By default full
- PMPviolations => trap

- Load access fault, store access fault, ...

- Exception
- Upto 64 PMP regions

- Statically prioritized
- Lowest number has highest priority

31

RISC-V PMP

Physical Memory Protection

- Optional
- Grant permissions to S and U modes

By default none

- Revoke permissions from M mode

By default full

- PMPviolations => trap

Load access fault, store access fault, ...
Exception

- Upto 64 PMP regions

Statically prioritized
Lowest number has highest priority

Trap

/\
Interrupt Exception
External asynchronous
event
PC MEPC
Priv ' mstatus.MPP
PC MEPC
Priv mstatus.MPP

Ky

N\

RISC-V PMP
PMP Entry

permissions

T

(i, lock, rwx, address)

| \

lock € {0, 1} upper bound

33

RISC-V PMP
PMP Entry

permissions

T

(i, lock, rwx, address)

| \

lock € {0, 1} upper bound

Bounds PMP, = [address, ,, address)

34

RISC-V PMP

State Transition: Trap

cur_privilege

P

cur_privilege

Machine

pcC

pc

Start of Iteration

mtvec
h

Trap

mtvec

mstatus

mpp

mstatus

P

mepc

mepc

mepc

35

RISC-V PMP

State Transition

Start of Iteration

cur_privilege pc

p i

mtvec mstatus mepc

h mpp mepc

| 7

p = Machine

Normal Execution

cur_privilege pc mtvec mstatus mepc cur_privilege pc
p i h mpp mepc Machine h
CSR Modified
cur_privilege pc mtvec mstatus mepc
Machine i' h' mpp' mepc'

i p = Machine

Trap
mtvec mstatus mepc
h p i
Recover
cur_privilege pc mtvec mstatus mepc
mpp mepc h User mepc

36

RISC-V PMP
\ Universal Contract

[Start
* > (CSRMod -% wp fdeCycle T)
* > (Trap -%¥ wp fdeCycle T)
% > (Recover -%¥ wp fdeCycle T) }
fdeCycle

{T}

37

RISC-V PMP
\ Universal Contract

{ Start
¥ > (CSRMod -% wp fdeCycle T)
¥ > (Trap -% wp fdeCycle T)
% > (Recover -% wp fdeCycle T) }
fdeCycle

{T}

38

RISC-V PMP

Full-System Proof: FemtoKernel

Memory Integrity:
data will always contain the value 42

—

kS

©

c

&
2 o S o> s
c £ ST ©

Memory

39

RISC-V PMP

Full-System Proof: FemtoKernel

init:

la ra, adv

csrrw zero, pmpaddr0, ra
lui ra, max

csrrw zero, pmpaddr1, ra
lui ra, Ox0

csrrw zero, pmpOcfg, ra
lui ra, Oxf

csrrw zero, pmp1cfg, ra

N

S

—

Q@

he]

c

2
1 ﬂS> x
+— o =) ©

&= = T O

£ 5 T © €

Memory

/
S
o

<

Y
(0,0,-) (1,0,RWX,)

40

RISC-V PMP

Full-System Proof: FemtoKernel

init:
la ra, adv)
csrrw zero, pmpaddr0, ra
lui ra, max Memory Integrity:
csrrw zero, pmpaddr1, ra Configure data will always contain the value 42
lui ra, 0x0 (=1 ¥]=]
csrrw zero, pmpOcfg, ra
lui ra, Oxf
csrrw zero, pmp1cfg, ra
la ra, adv N
CSsrrw zero, mepc, ra
la ra, trap_handler Setup
csrrw zero, mtvec, ra > Trap
lui ra, Ox0 Handler,
csrrw zero, mstatus, ra Jump to adv
mret J

handler

init
trap_
data
adv
max

Memory

/
.
~

<

~
(0,0,-) (1,0,RWX,)

41

RISC-V PMP

Full-System Proof: FemtoKernel

init:
la ra, adv)
csrrw zero, pmpaddr0, ra
lui ra, max Memory Integrity:
csrrw zero, pmpaddr1, ra Configure data will always contain the value 42
lui ra, 0x0 C PMP
csrrw zero, pmpOcfg, ra
lui ra, Oxf -
csrrw zero, pmp1cfg, ra 2
la ra, adv 3 &
CSITW Zero, mepc, ra o ‘é Y = =
la ra, trap_handler Setup £ e 3 s £
csrrw zero, mtvec, ra > Trap v
lui ra, 0x0 Handler, emery
csrrw zero, mstatus, ra Jump to adv N N Y,
mret J Y Y
trap_handler
pguipc ra. 0 Store value (O: 07) _) (1, O, RWX, _)
’ of
lw ra, 12(ra) e
mret into ra
data: 42

adv: ... 42

Conclusion

43

Evaluation

e Comparison with Cerise
o Proof effort reduction

MinimalCaps

RISC-V PMP

Cerise

o Not entirely fair LoC

2867

3880

7919

e Added Instruction
o Uninteresting case
o RISC-V PMP: +2 LoC
o MinimalCaps: +23 LoC

e FemtoKernel

44

Summary

e Security Guarantees
o Formalized as Universal Contracts
o Part of security specification
o Verified against operational specification
e Case Study: MinimalCaps
o Capability safety
e Case Study: RISC-V PMP
o Memory Integrity
e Katamaran
o Semi-automatic separation logic verifier

This presentation is part of the UniversalContracts project that has received funding from the European Research Council (ERC) under the European Union’s Horizon Europe research and innovation programme (Grant

agreement No. 101040088). 45
The work was also supported in part by the Research Foundation - Flanders (FWO), by the Flemish Research Programme Cybersecurity.
Views and opinions expressed are those of the author(s) only.

Side-channels
Future Work

- Current focus on integrity guarantees
- Software observable side-channels

- Timing-based side-channels (Instruction Timing)
- Should be part of security specification

- ISA should not specify all details...

- ...but enough to reason about it

47

Cerise: Program Verification on a Capability Machine in the
Presence of Untrusted Code

AINA LINN GEORGES, Aarhus University, Denmark
ARMAEL GUENEAU, Aarhus University, Denmark
THOMAS VAN STRYDONCK, KU Leuven, Belgium
AMIN TIMANY, Aarhus University, Denmark

ALIX TRIEU, Aarhus University, Denmark

DOMINIQUE DEVRIESE, Vrije Universiteit Brussel, Belgium
LARS BIRKEDAL, Aarhus University, Denmark

A capability machine is a type of CPU allowing fine-grained privilege separation using capabilities, machine
words that represent certain kinds of authority. We present a mathematical model and accompanying proof
methods that can be used for formal verification of functional correctness of programs running on a capability
machine, even when they invoke and are invoked by unknown (and possibly malicious) code. We use a
program logic called Cerise for reasoning about known code, and an associated logical relation, for reasoning
about unknown code. The logical relation formally captures the capability safety guarantees provided by the
capability machine. The Cerise program logic, logical relation, and all the examples considered in the paper
have been mechanized using the Iris program logic framework in the Coq proof assistant.

The methodology we present underlies recent work of the authors on formal reasoning about capability
machines [Georges et al. 2021; Skorstengaard et al. 2019a; Van Strydonck et al. 2021], but was left somewhat
implicit in those publications. In this paper we present a pedagogical introduction to the methodology, in a
simpler setting (no exotic capabilities),and sarting from minimal examples. We \vnrk our way up to new results
about a heap-based calling and of bject-capability patterns of the
kind previously studied for high-level lang\lages with object that the
scales to such reasoning,

ACM Reference Format:

Aina Linn Georges, Armaél Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Dominique Devriese,
and Lars Birkedal. 2021. Cerise: Program Verification on a Capability Machine in the Presence of Untrusted
Code. . ACM 1,1 (October 2021), 55 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

A capability machine is a type of CPU that enables fi d memory compar and

privilege separation through the use of capabilities. This type of hardware architecture has been
studied since the 60ies [Dennis and Van Horn 1966; Levy 1984], and in particular more recently as
part of the CHERI project [Watson et al. 2020]. Capability machines offer fine-grained and scalable

Authors’ addresses: Aina Linn Georges, ageorges@cs.au.dk, Aarhus University, Denmark; Armaé] Guéneau, armacl@es.au.dk,
Aarhus University, Denmark; Thomas Van Strydonck, thomas.vanstrydonck@cs kuleuven.be, KU Leuven, Belgium; Amin
Timany, timany@cs.au.dk, Aarhus University, Denmark; Alix Trieu, alix.tricu@es.au.dk, Aarhus University, Denmark;
Dominique Devriese, dominique.devriese@vub.be, Vrije Universiteit Brussel, Belgium; Lars Birkedal, birkedal@cs.au.dk,
Aarhus University, Denmark.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and /or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0004-5411/2021/10-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

Verified security for the Morello capability-enhanced prototype Arm
architecture

THOMAS BAUEREISS, University of Cambridge, UK
BRIAN CAMPBELL, University of Edinburgh, UK
THOMAS SEWELL, University of Cambridge, UK
ALASDAIR ARMSTRONG, University of Cambridge, UK
LAWRENCE ESSWOOD, University of Cambridge, UK
IAN STARK, University of Edinburgh, UK

GRAEME BARNES, Arm Ltd., UK

ROBERT N. M. WATSON, University of Cambridge, UK
PETER SEWELL, University of Cambridge, UK

Memory safety bugs continue to be a major source of security vulnerabilities in our critical infrastructure. The CHERI
project has proposed extending with hard pported capabilities to enable fine-grained
memory protection and scalable compartmentalisation, allowing historically memory-unsafe C and C++ to be adapted to
deterministically mitigate large classes of vulnerabilities, while requiring only minor changes to existing system software
sources. Arm is currently designing and building Morello, a CHERI-enabled prototype architecture, processor, SoC. and
board, extending the high-performance Neaverse N1, to enable industrial evaluation of CHERI and pave the way for potential
mass-market adoption. However, for such a major new security-oriented architecture feature, it is important to establish
high confidence that it does provide the protections it intends to, and that cannot be done with conventional engineering
techniques

In this paper we put the Morello architecture on a solid mathematical footing from the outset. We define the fundamental
security property that Morello aims to provide, reachable capability monotonicity, and prove that the architecture definition
satisfies it. This proof is mechanised in Isabelle/HOL, and applis to a translation of the official Arm Morello specification into
Isabelle. The main challenge is handling the complexity and scale of a production architecture: 62,000 lines of specification,
translated to 210,000 lines of Isabelle. We do so by factoring the proof via a narrow abstraction capturing the essential properties
of instruction execution in an arbitrary CHERI ISA, expressed above a monadic intra-instruction semantics. We also develop a
model-based test generator, which generates instruction-sequence tests that give good specification coverage, used in earl
testing of the Morello implementation and in Morello QEMU development. We also use Arm’s internal test suite to validate
our internal model

‘This gives us machine-checked mathematical proofs of whole-ISA security properties of a full-scale industry architecture,
at design-time. To the best of our knowledge, this is the first demonstration that that is feasible, and it significantly increases
confidence in Morello

1 INTRODUCTION
1.1 The CHERI and Morello Context

Memory safety bugs continue to be a major source of security vulnerabilities, responsible for around 70% of those
addressed by Microsoft security updates, and around 70% of the high-severity bugs impacting Chromium [25,
Their root causes are well-known legacy design choices and limitations of normal practice: pervasive uses of
systems programming languages that do not enforce memory protection; hardware that enforces only coarse-grain
protection, with virtual memory; and test-and-debug development methods that cannot provide high assurance.
These are baked in to the critical systems codebase across the industry, and the result, in today’s adversarial
environment, is that programming errors can often lead to exploitable vulnerabilities

‘There are many possible approaches to improving this situation, including development of safer programming
languages, techniques for full functional-correctness verification, and better bug-finding tools. Each is the subject
of much research in programming languages and semantics, and all are worthwhile, but the legacy investment,
the need for systems code to work close to the machine, and the inability of bug-finding to provide high assurance,
makes it very hard to radically improve mass-market systems.

Another path, less well explored, is to change the architectural interface to provide hardware mechanisms that
enable better enforcement of memory protection. Over the last ten years, the CHERI project [1] has been extending
conventional hardware Instruction-Set (ISAs) with new archil features to enable fine-g
memory protection and highly scalable software ‘The CHERI features
allow historically memory-unsafe programming languages such as C and C+-+ to be adapted to have quite different

Authors’ addresses: Thomas Bavereiss, Thomas Bavereiss@cl.ca.ac.uk, University of Cambridge, Cambridge, UK; Brian Campbell, Brian.
Campbell@ed.ac.uk, University of Edinburgh, Edinburgh, UK; Thomas Sewell, Thomas Sewell@cL cam.ac.uk, University of Cambridge,
Cambridge, UK: Alasdair Armstrong, Alasdair Armstrong@cl.cam.ac.uk, University of Cambridge, Cambridge, UK; Lawrence Esswood,
le277@camac.uk, University of Cambridge, Cambridge, UK; lan Stark, an Stark @ed.ac.uk, University of Edinburgh, Edinburgh, UK: G
Barnes, Graeme Bames@arm.com, Arm Ltd, Cambridge, UK: Robert N. M. Watson, Robert Watson@cl.cam.ac.uk, University of Cambride,
Cambridge, UK; Peter Sewell, Peter Sewell@cl.cam.ac.uk, University of Cambridge, Cambridge, UK.

Version of 2021-09-06 08:49.

RISC-V PMP
\ Example

Memory

(63,0,RWX,)

49

{V(c) * V(w) } write_memcw {V(c) *¥ V(w) |
Verifying MinimalCaps’ Security Guarantees

{(3 c,pcrc %k V(c) ¥ CorrectPC(c)) * (¥ ___. 3 wW.r>w ¥ V(w))}
function exec_sd(rs : GPR, rb : GPR, immediate : int) : bool :=

{rb~ base cap % V(base cap) ¥ rs~>w ¥ Y(w) ¥ V(c) ..}
call write. memcw ;;
{rb~ base _cap % V(base cap) ¥ rs~>w ¥ V(w) ¥ V(c) ...}
call update pc ;; true
{(Fc,pcrc*k (Vc)Vel))) *k (¥ _ T W.r>w ¥k Vw))}

50

Contract
Execute

}{ (3 c,pcrc *k V(c) k CorrectPC(c)) % (%

function execute() : bool :=
let c ;= call read_reg_cap pc in}\ Fetch
let n ;= call read_mem c in
match n with
| inl n =>
leti:=call decode nin
call exec_instr i Execute
| inr ¢ => fail
end
{wp fdeCycle T}

Decode

r € GPR

3 w.r>w % Y(w))

51

Future Work

CCS’22 Submission

A NN

A Ay
Safety RISC-VPMP capabilites ~ Memory
Capability safety = Memory integrity Add support for Verification of
of the for RISC-V PMP object security
MinimalCaps with capabilities to properties of
machine synchronous the MinimalCaps Virtual Memory

interrupts case study

Proof
Automation

Further improve
proof
automation of
Katamaran

Larger ISAs

Scale up the
number of
instructions in
ISAs we
consider

Complex ISAs

Introduce
features such as
concurrency,
interrupts, ...

Realistic ISAs

Verify security
properties of real
ISAs, i.e.
RV32G..,
CHERI-RISC-V, ...

52

