
Integrating Iris into the
Verified Software Toolchain,

and vice versa

William Mansky, University of Illinois Chicago
Iris Workshop, May 23rd, 2023

The Verified Software Toolchain (VST)

• Concurrent separation logic verifier in Coq

• Higher-order, step-indexed, symbolic execution + entailment solving

• Specialized to C, connected to CompCert
• End-to-end soundness theorem

2

5Credit: Ilya Sergey

Iris and VST

• C isn’t garbage-collected, so logic shouldn’t be affine
• Ownership can’t be “just ghost state”: it’s translated

to CompCert permissions and used for adequacy

• Proof mode
• Custom ghost state
• Invariants
• Logical atomicity
• …

6

Iris in VST

instantiate

• Keep VST’s foundations the same, import or reconstruct the features we want

import

• Proof mode
• Custom ghost state
• Invariants
• Logical atomicity
• …

7

Iris in VST

instantiate

• Keep VST’s foundations the same the core of the model and soundness proof,
import or reconstruct the features we want

import

rebuild (ghost state,
invariants, …)

• Proof mode
• Custom ghost state
• Invariants
• Logical atomicity
• …

8

VST on Iris

• Replace VST’s foundations with Iris, rebuild the rest of VST on top, get Iris
features for free

9

Iris in VST

instantiate

• Keep VST’s foundations the same the core of the model and soundness proof,
import or reconstruct the features we want

import

• Proof mode
• Custom ghost state
• Invariants
• Logical atomicity
• …

10

rebuild (ghost state,
invariants, …)

VST + MoSeL

Get IPM by instantiating the BI interface with VST’s logic

Non-obvious parts of BI:

• Step-indexing and ▷ — but they’re exactly the same in VST as in Iris

• Persistence (⊡) modality
• Default definition: ⊡𝑃 (𝑥) when 𝑃 (core 𝑥)
• VST has core too, but core is always emp!
• Simple instantiation: ⊡𝑃 (𝑥) when 𝑃 ∧ emp (𝑥)

MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic,
Krebbers et al., ICFP 2018

12

VST + MoSeL

Immediately get MoSeL tactics for VST’s separation logic

13

VST + MoSeL

Immediately get MoSeL tactics for VST’s separation logic

14

VST + MoSeL

Immediately get MoSeL tactics for VST’s separation logic

• Don’t get wp tactics, but VST has its own (forward)

• Don’t yet get tactics for invariants, updates, atomic updates, etc. – those
have their own classes to instantiate

• But first, we need those things to exist in VST!

MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic,
Krebbers et al., ICFP 2018 15

Ghost State in VST

• Model of Iris: 𝑀 ≜ ς𝑖∈𝐼ℕ ⇀ 𝑀𝑖 ,
where cameras 𝑀𝑖 may include predicates

• Model of VST (“rmap”): 𝑅 ≜ loc ⇀ res ,
where res may include predicates (“predicates in the heap”)

• New model of VST: 𝑅 ∗ 𝑀
• In practice, we don’t get HO ghost state, just agreement

16

Ghost State Updates in VST

• New model of VST: 𝑅 ∗ 𝑀 (approximately)

• Now we can define ⇛, and add updates between steps in our semantics
• And instantiate BUpd class, use iMod and iModIntro

• Hoare rules are unchanged, since program ops ignore ghost state

• Adequacy proof basically unchanged

• Used for simple double-increment example, external state reasoning

Verifying an HTTP Key-Value Server with Interaction Trees and VST, Zhang et al., ITP 2021

17

Invariants in VST

• Invariants can be built out of ghost state

• In Iris: where 𝐼 is a map from
names to assertions

• This is exactly what we can’t do with our restricted HO ghost state!

• Refactored construction:

• Satisfies all the same proof rules, and we can build namespaces,
instantiate proofmode classes for invariants, etc. on top of it

19

Fancy Updates in VST

x ↦ 3 ∨ x ↦ 4
x ← 3 || x ← 4
x ↦ 3 ∨ x ↦ 4

• In C, this is undefined behavior!

20

Fancy Updates in VST

x ↦ 3 ∨ x ↦ 4
x ← 3 || x ← 4
x ↦ 3 ∨ x ↦ 4

• In C, this is undefined behavior!

• We set atomic to mean concurrency-atomic: lock acquire/release,
atomic_load/store, etc., and nothing else

21

Fancy Updates in VST

• We set atomic to mean concurrency-atomic: lock acquire/release,
atomic_load/store, etc.

• Unlike basic updates, this changes the semantics: “real” resources can
change hands between steps

• For concurrent soundness, have to prove race-freedom, which seems
true but not obvious

22

Persistence in VST

• In Iris: invariants are persistent, can freely be automatically
duplicated and passed between threads

• In VST: we defined ⊡𝑃 to only hold on emp!

• Invariants really need to be affine too, but in VST nothing is affine!

• Step 1: weaken the core axiom

• Step 2: make the logic semi-linear

23

Persistence in VST

Step 1: weaken the core axiom

VST: 𝑎 ≼ 𝑏 → core 𝑏 = core 𝑎

Iris: 𝑎 ≼ 𝑏 → core 𝑏 ≼ core 𝑎

• In Iris, the core of ℕ,+ can tell us “the value is at least 𝑛”; in VST, it
can only tell us “the value is at least 0”

• Simple solution: weaken VST’s core axiom
• Heap resources still have trivial cores, but ghost state doesn’t have to

• Now we can define useful persistence

• And all the existing proofs still work
24

Persistence in VST

Step 2: make the logic semi-linear

• ORA idea from MoSeL: equip algebras with an extension order ⊑
describing which resources can be thrown away

• Define predicates to be closed under ⊑

• Surprisingly, VST’s model also has a slot for this order! Included in
2009, never mentioned in a paper or instantiated nontrivially

• We choose: 𝑟,𝑚 ⊑ 𝑟′, 𝑚′ ≜ 𝑟′ = 𝑟 ∧ 𝑚 ≼ 𝑚′

• Now all ghost state is affine, and all ghost state cores (including
invariants) are intuitionistic!

25

Using Iris in VST

• We now have custom ghost state, invariants, updates, and
all the relevant Iris tactics in VST

• Can import definitions like logical atomicity directly

26

Using Iris in VST

• We now have custom ghost state, invariants, updates, and
all the relevant Iris tactics in VST

• Can import definitions like logical atomicity directly

27

Iris in VST: Summary

• All the concurrency features of Iris, in VST

• Foundational changes: ghost state in the model, weaker core axiom,
extension order for affine ghost state, fancy updates in the semantics

• Now we can prove atomic specs for concurrent C programs, using VST
for C code and switching to Iris tactics for concurrency reasoning

• Could be useful for other non-Iris verifiers that want Iris features

• Can now reconstruct ghost-state-based reasoning in VST, e.g. ReLoC

• Paper on arXiv, opam package coq-vst-iris

28

Iris in VST: Summary

• Now we can prove atomic specs for concurrent C programs,
using VST for C code and switching to Iris tactics for concurrency

But:

• Concurrent soundness is still complicated

• We’re reconstructing Iris features, and there’s always more we might
want to reconstruct (transfinite step-indexes, later credits, …)

• We’re working in parallel to RefinedC and the whole Iris ecosystem

• What if VST was built on Iris instead? 29

Iris and VST

• C isn’t garbage-collected, so logic shouldn’t be affine
We can use ORAs!
• Ownership can’t be “just ghost state”: it’s translated

to CompCert permissions and used for adequacy
Need a fancier relationship between physical state and
mapsto assertions

• Proof mode
• Custom ghost state
• Invariants
• Logical atomicity
• …

30

VST on Iris

• Replace VST’s foundations with Iris, rebuild the rest of VST on top, get Iris
features for free

31

VST on Iris: “juicy” view

• State interpretation: • 𝜎 where 𝜎 is a map from locations to values

• Maps-to: 𝑙 ↦ 𝑣 is defined as ∘ 𝑙 ≔ 𝑣

• 𝜎 ∗ 𝑙 ↦ 𝑣 ⊢ 𝜎 𝑙 = 𝑣

• In VST, these don’t coincide!
• Physical memory (CompCert) maps locations to values + permissions

(readable, writable, etc.)

• Logical memory maps locations to rmap resources + shares

• Semantics defined in terms of a “juicy mem” that includes both CompCert
mem and rmap, plus proof that they are 𝐜𝐨𝐡𝐞𝐫𝐞𝐧𝐭

37

VST on Iris: “juicy” view

• General views: parameterized by a relation 𝑅, give:

• 𝑎 ∗ ∘ 𝑏 ⊢ 𝑅 𝑎 𝑏

• In VST, we can choose 𝑅 ≜ 𝐜𝐨𝐡𝐞𝐫𝐞𝐧𝐭, and get:

• 𝑚 ∗ 𝑙 ↦𝜋 𝑣 ⊢ 𝐜𝐨𝐡𝐞𝐫𝐞𝐧𝐭 𝑚 𝑙 𝜋 𝑣

38

VST on Iris: “juicy” view

• General views: parameterized by a relation 𝑅, give:

• 𝑎 ∗ ∘ 𝑏 ⊢ 𝑅 𝑎 𝑏

• In VST, we can choose 𝑅 ≜ 𝐜𝐨𝐡𝐞𝐫𝐞𝐧𝐭, and get:

• 𝑚 ∗ 𝑙 ↦𝜋 𝑣 ⊢ 𝐜𝐨𝐡𝐞𝐫𝐞𝐧𝐭 𝑚 𝑙 𝜋 𝑣

Old VST: ∀𝑗. 𝑙 ↦ 𝑣 rmap_of 𝑗 → valid_pointer 𝑙 (mem_of 𝑗)

VST on Iris: • 𝑚 ∗ 𝑙 ↦ 𝑣 ⊢ ⌜valid_pointer 𝑙 𝑚⌝ 39

VST on Iris: semantics

• Iris: wp 𝑒 Φ when either 𝑒 is terminated in a state satisfying Φ, or
𝑆 𝜎 ⇛ 𝑒, 𝜎 → 𝑒′, 𝜎′ ⇛ 𝑆 𝜎′ ∗ wp 𝑒′ Φ

• VST defines safety similarly, except that there are two kinds of steps:
• Core steps are steps by the Clight semantics

• External calls call arbitrary external functions with provided pre- and
postconditions

• Safety was originally defined as a relation on juicy mems, but we can
rephrase it inside the logic analogously to wp

40

VST on Iris: program logic

• Proved exactly the same triples for C statements (mod. Iris notation)

• Proofs are about ½ the size of old versions
• #1 reduction: reasoning at the logic level instead of unfolding to the model

• #2 reduction: proof mode tactics

42

VST on Iris: adequacy

• Still in progress: should be the same paper proof, but in Iris terms

• Aim to prove as much as possible (probably everything!) in the logic
instead of unfolding to the model

• VST has complicated armature for lifting CompCert’s soundness to
concurrency; it should be easier with Iris, but basically the same

• We’re long overdue for a better approach to compiler correctness for
concurrency! Happy to talk if you have ideas.

43

VST on Iris: user interface

• Still need to rebuild symbolic execution tactics and automation

• Interaction mode 1: VST + Iris
• Can do anything we did before in VST in exactly the same way

• Drop into Iris proof mode as desired for invariants, atomics, etc.

• Interaction mode 2: Iris style
• Turn Hoare triples into WP format, stay in IPM the whole time

• Will require retooling VST’s automation (forward, etc.) to work on IPM goals

• More comfortable for Iris people, could adapt Diaframe

44

Conclusion

• Iris in VST: mostly done
• Can prove logically atomic specs for C programs using Iris logic and tactics

• Takes cues from Iris, reuses some of it, rebuilds a lot more

• VST on Iris: looks like it’ll work!
• More expressive ghost state

• Can incorporate new Iris ideas: transfinite step-indexing, later credits, …

• Integrate with other tools? Diaframe, RefinedC, …

• What would you do with a CompCert C mode for Iris?

45

46

VST on Iris: ownership

• Iris mapsto is simple: 𝑙 ↦𝑞 𝑣, where 𝑞 is a positive fraction
• Any 𝑞 is enough to read, 1 is required to write

• VST uses tree shares, with 4 distinct permission levels (corresponding to
CompCert permission levels): nonempty, readable, writable, freeable

• Nonempty ownership gives knowledge of the location, but not its value!

• 𝑙 ↦𝑞 𝑣 is 𝑙 ≔ YES 𝑞 _ 𝑣

• Also have 𝑙 ↦𝑞 ⊥, which is 𝑙 ≔ NO 𝑞 _

47

VST on Iris: resources

• Model of VST: 𝑅 ≜ loc ⇀ res , where res may include predicates
(“predicates in the heap”)

• res ≜ VAL 𝑣 LK 𝑅 FUN 𝐴 𝑃 𝑄

• Last two use “predicates in the heap”
• But in Iris they don’t need to! We’ll come back to this

48

VST on Iris: predicates in the heap

• Model of VST: 𝑅 ≜ loc ⇀ res , where res may include predicates
(“predicates in the heap”)

• res ≜ VAL 𝑣 LK 𝑅 FUN 𝐴 𝑃 𝑄

• We can take the predicates out of the heap, and use ghost
state/invariants for them instead

49

VST on Iris: predicates in the heap

• Model of VST: 𝑅 ≜ loc ⇀ res , where res may include predicates
(“predicates in the heap”)

• res ≜ VAL 𝑣 LK FUN 𝐴 𝑃 𝑄

• We can take the predicates out of the heap, and use ghost
state/invariants for them instead

• isLK 𝑙 𝑅 ≜ 𝑙 ↦ LK ∗ inv 𝑅

50

VST on Iris: predicates in the heap

• res ≜ VAL 𝑣 LK FUN 𝐴 𝑃 𝑄

• 𝑙 ↦ FUN 𝐴 𝑃 𝑄 asserts that 𝑙 is a function pointer w/ spec
∀𝑎: 𝐴, 𝑃 𝑎 𝑙 𝑄 𝑎

• We build an OFE for funspec (roughly isomorphic to
𝐴 & 𝐴 → mpred ∗ 𝐴 → mpred)

51

VST on Iris: predicates in the heap

• res ≜ VAL 𝑣 LK FUN

• 𝑙 ↦ FUN 𝐴 𝑃 𝑄 asserts that 𝑙 is a function pointer w/ spec
∀𝑎: 𝐴, 𝑃 𝑎 𝑙 𝑄 𝑎

• We build an OFE for funspec (roughly isomorphic to
𝐴 & 𝐴 → mpred ∗ 𝐴 → mpred)

• Define isFUN 𝑙 𝑓 ≜ 𝑙 ↦ FUN ∗ ∘ 𝑙 ≔ ⊳ 𝑓
• Analogous to invariant construction

52

	Slide 1: Integrating Iris into the Verified Software Toolchain, and vice versa
	Slide 2: The Verified Software Toolchain (VST)
	Slide 5
	Slide 6: Iris and VST
	Slide 7: Iris in VST
	Slide 8: Iris in VST
	Slide 9: VST on Iris
	Slide 10: Iris in VST
	Slide 12: VST + MoSeL
	Slide 13: VST + MoSeL
	Slide 14: VST + MoSeL
	Slide 15: VST + MoSeL
	Slide 16: Ghost State in VST
	Slide 17: Ghost State Updates in VST
	Slide 19: Invariants in VST
	Slide 20: Fancy Updates in VST
	Slide 21: Fancy Updates in VST
	Slide 22: Fancy Updates in VST
	Slide 23: Persistence in VST
	Slide 24: Persistence in VST
	Slide 25: Persistence in VST
	Slide 26: Using Iris in VST
	Slide 27: Using Iris in VST
	Slide 28: Iris in VST: Summary
	Slide 29: Iris in VST: Summary
	Slide 30: Iris and VST
	Slide 31: VST on Iris
	Slide 37: VST on Iris: “juicy” view
	Slide 38: VST on Iris: “juicy” view
	Slide 39: VST on Iris: “juicy” view
	Slide 40: VST on Iris: semantics
	Slide 42: VST on Iris: program logic
	Slide 43: VST on Iris: adequacy
	Slide 44: VST on Iris: user interface
	Slide 45: Conclusion
	Slide 46
	Slide 47: VST on Iris: ownership
	Slide 48: VST on Iris: resources
	Slide 49: VST on Iris: predicates in the heap
	Slide 50: VST on Iris: predicates in the heap
	Slide 51: VST on Iris: predicates in the heap
	Slide 52: VST on Iris: predicates in the heap

