Integrating Iris into the
Verified Software Toolchain,
and vice versa

William Mansky, University of Illinois Chicago
Iris Workshop, May 239, 2023

uic

The Verified Software Toolchain (VST) Verified

Software

Toolchain
* Concurrent separation logic verifier in Coq

* Higher-order, step-indexed, symbolic execution + entailment solving

 Specialized to C, connected to CompCert
* End-to-end soundness theorem

/— Owicki-Gries (1976) \

Rely-Guarantee (1983) CSL (2004

[[
Ny
j RGSep (2007)

SAGL (2007) //
l \’ Deny-Guarantee (2009)
|

LRG (2009) ,j,\
CAP (2010)

HOCAP (2013)

RSL (2013)
) _

Bornat-al (2005) — FSL (2016)

Concurrent RGRefs (2017)

Hobor-al (2008)

Hobor-Gherghina
(201 1)

Bell-al (2010) FSL 44

(2017)
Gotsman-al (2007)

~ Jacobs-Piessens (201 1)

RGSim (2012)

HLRG (2010)
SCSL (2013)
TaDA (2014)

FTCSL (2015)

Liang-Feng (201 3)

CaReSL (2013) ICAP (2014)

| ColoSL (2015) FCSL (2014)
GPS (2014) Iris (2015) l

LiLi (2016) l / Total-TaDA (2016)

Iris 2.0 (20|6)_) Iris 3.0 (2017) Disel (2019)
| / ris 3.0 (Ise
IGPS (2017) \ Aneris (2020) /

Credit: llya Sergey >

Iris and VST

% Verified
Software
Toolchain
* Proof mode
* Custom ghost state * Cisn’t garbage-collected, so logic shouldn’t be affine
* Invariants * Ownership can’t be “just ghost state”: it’s translated

Logical atomicity to CompCert permissions and used for adequacy

Iris In VST

Verified

Software
Toolchain

instantiate

i

* Proof mode

e Custom ghost state
* |nvariants

* Logical atomicity

* Keep VST’s foundations the same, import or reconstruct the features we want

7

Iris In VST

Verified
Instantiate

Software

ris|=—

* Proof mode

e Custom ghost state
* |nvariants

* Logical atomicity

Toolchain

rebuild (ghost state,
invariants, ...)

4

* Keep the core of the model and soundness proof,
import or reconstruct the features we want

8

VST on Iris

Verified
Software

chain
[ris

* Replace VST’s foundations with Iris, rebuild the rest of VST on top, get Iris
features for free

Iris In VST

Verified
Instantiate

Software
Toolchain

ris|=—

Proof mode rebuild (ghost state,
Custom ghost state invariants, ...)
Invariants

Logical atomicity

4

* Keep the core of the model and soundness proof,
import or reconstruct the features we want

10

VST + MoSel It X Verified

(S Software

Toolchain
Get IPM by instantiating the Bl interface with VST’s logic

Non-obvious parts of Bl:
* Step-indexing and > — but they’re exactly the same in VST as in Iris

* Persistence (1) modality
* Default definition: ([]P)(x) when (P)(core x)
* VST has core too, but core is always emp!
* Simple instantiation: ([-]P)(x) when (P A emp)(x)

MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Loqgic,
Krebbers et al., ICFP 2018

VST + MoSel

[ris

Immediately get MoSel tactics for VST’s separation logic

STarct_Ttunction.
(** For each assignment statement, "symbolically execute" it
** ysing the forward tactic *)
forward. (* w = NULL; *)
forward. (* v = p; *)
(** To prove a while-loop, you must supply a loop invariant,
** 1n this case (EX sl PROP(...)LOCAL(...)(SEP(...)). *)
forward_while
(EX sl: list val, EX s2 : 1list val,
EX w: val, EX v: val,
PROP (sigma = rev sl ++ s2)
LOCAL (temp _w w; temp _v V)
SEP (listrep sl w; listrep s2 v)).
(** The forward_while tactic leaves four subgoals,
** which we mark with * (the Coq "bullet") *)
* (* Prove that precondition implies loop invariant *)

go_Tlower.

iIntros "list".

iExists nil, _, nullval, _
iSplit; first done.

by iFrame.

1 goal

Espec : OracleKind

sigma : list val

p : val

Delta_specs : Maps.PTree.t funspec
PNp : is_pointer_or_null p

(o) Verified

H : is_pointer_or_null (Vleng (Int64.repr (Int.signed (Int.repr 0))))

(1/1)

listrep sigma p
|-- EX (a a@ : 1list val) (al a2

val),

I'l (sigma = rev a ++ a@ A al = Vlong (Int64.repr (Int.signed (Int.repr 0))) A a2

listrep a al * listrep a0 a2

13

p) &&

VST + MoSel

Immediately get MoSel tactics for VST’s separation logic

start_rtunction.

(** For each assignment statement, "symbolically execute" it

** ysing the forward tactic *)
forward. (* w = NULL; *)
forward. (* v = p; *)
(** To prove a while-loop, you must supply a loop invariant,
** in this case (EX s1 PROP(...)LOCAL(...)(SEP(...)). *)
forward_while
(EX s1: list val, EX s2 :
EX w: val, EX v: val,
PROP (sigma = rev sl ++ s2)
LOCAL (temp _w w; temp _v v)
SEP (listrep sl w; listrep s2 v)).
(** The forward_while tactic leaves four subgoals,
**k which we mark with * (the Coq "bullet") *)
* (* Prove that precondition implies loop invariant *)

list val,

go_lower.

iIntros "list".

iExists nil, _, nullval, _
iSplit; first done.

by iFrame.

(o) Verified

[ris

1 goal

Espec : OracleKind
sigma : list val

p : val

Delta_specs : Maps.PTree.t funspec

PNp : is_pointer_or_null p

H : is_pointer_or_null (Vlong (Int64.repr {(Int.signed (Int.repr @))))
(1/1)

"list" listrep sigma p

EX (a a0 : 1list val) (al a2 val),

I'l (sigma = rev a ++ a0 A al = Vliong (Inté4.repr (Int.signed (Int.repr 0))) A a2 = p) &&
listrep a al * listrep a0 a2

14

Verified

Ir (* S Software

Toolchain

VST + MoSel

Immediately get MoSel tactics for VST’s separation logic
« Don’t get wp tactics, but VST has its own (forward)

» Don't yet get tactics for invariants, updates, atomic updates, etc. — those
have their own classes to instantiate

 But first, we need those things to exist in VST!

MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Loqgic,
Krebbers et al., ICFP 2018

Ghost State in VST Irgs Verified

. S Software
Toolchain

* Model of Iris: M £ [],¢;N = M;,
where cameras M; may include predicates

* Model of VST (“rmap”): R = loc — res,
where res may include predicates (“predicates in the heap”)

e New model of VST: R * M

* |n practice, we don’t get HO ghost state, just agreement

Ghost State Updates in VST Ir?ﬁ Verified

. S Software
Toolchain

* New model of VST: R * M (approximately)

* Now we can define =, and add updates between steps in our semantics
* And instantiate BUpd class, use iMod and iModIntro

* Hoare rules are unchanged, since program ops ignore ghost state
* Adequacy proof basically unchanged

* Used for simple double-increment example, external state reasoning
Verifying an HTTP Key-Value Server with Interaction Trees and VST, Zhang et al., ITP 2021

Invariants in VST Ir *S \S/ezﬁed
] oftware

Toolchain

* Invariants can be built out of ghost state

*Inlris: W2 e(»D)x 3K (>I(i) = dis(i)) Ven(i) where I isa map from
iedom(I) names to assertions

* This is exactly what we can’t do with our restricted HO ghost state!
* Refactored construction:

W2eGx 3K agg (i) ((-1(i) + dis(i)) V en(i))
iedom(G)

e Satisfies all the same proof rules, and we can build namespaces,
instantiate proofmode classes for invariants, etc. on top of it

Fancy Updates in VST

WP-ATOMIC
WP-VUP

atomic

()

Ir

x

.S

=sWpg € {v. =7 cb(v)} =wpe e {P]

{xm3vxH 4

X< 3||x«4

{xm»3vxH 4

* In C, this is undefined behavior!

}
}

& @52 Wpg, € {v. 82951 (I)(v)} I—ngl e{d}

Verified

Software
Toolchain

Fancy Updates in VST

WP-VUP
=sWpg € {v. =7 cb(v)} =wpe e {P]

WP-ATOMIC

p Verified
Ir S Software

Toolchain

atomig(e)

& 952 Wpg, € {v. 82951 (I)(v)} I—ngl e{d}

X3V 4

X< 3||x«4

X3V 4

* In C, this is undefined behavior!

}
}

* We set atomic to mean concurrency-atomic: lock acquire/release,
atomic_load/store, etc., and nothing else

Fancy Updates in VST Ir* Verified

(S Software
Toolchain

WP-ATOMIC
WP-VUP

atomic(e)
=sWpg € {v. =7 @(v)} =wpe e {P]

& 952 Wpg, € {v. 52951 (I)(v)} I—ngl e{d}

* We set atomic to mean concurrency-atomic: lock acquire/release,
atomic_load/store, etc.

* Unlike basic updates, this changes the semantics: “real” resources can
change hands between steps

* For concurrent soundness, have to prove race-freedom, which seems
true but not obvious

Verified

x
Ir S Software

Toolchain

Persistence in VST

* In Iris: invariants are persistent, can freely be automatically
duplicated and passed between threads

* In VST: we defined [-]P to only hold on emp!

* Invariants really need to be affine too, but in VST nothing is affine!

e Step 1: weaken the core axiom
» Step 2: make the logic semi-linear

Persistence in VST Ir gss Verified

Software
Toolchain

Step 1: weaken the core axiom
VST: a < b — core(b) = core(a)
Iris: a < b —» core(b) < core(a)

* |n Iris, the core of (N, +) can tell us “the value is at least n”; in VST, it
can only tell us “the value is at least 0”

e Simple solution: weaken VST’s core axiom
* Heap resources still have trivial cores, but ghost state doesn’t have to
* Now we can define useful persistence
* And all the existing proofs still work

Persistence in VST Ir gss \S/ezﬂed
] oftware

Toolchain

Step 2: make the logic semi-linear

* ORA idea from MoSeL: equip algebras with an extension order E
describing which resources can be thrown away

* Define predicates to be closed under E

 Surprisingly, VST’s model also has a slot for this order! Included in
2009, never mentioned in a paper or instantiated nontrivially

/

e Wechoose: (rrm)E(r' m')2r'=rAm=<m

* Now all ghost state is affine, and all ghost state cores (including
invariants) are intuitionistic!

Using Iris in VST

Verified

Software
Toolchain

[/

* We now have custom ghost state, invariants, updates, and

all the relevant Iris tactics in VST

e Can import definitions like logical atomicity directly

- Intros i il keys; forward. forward.

rewrite -> sub_repr, and_repr; simpl.
rewrite -> Zland_two_p with (n := 14) by lia.
replace (2 ~ 14) with size by (setoid_rewrite (proj2_sig has_size); auto).
exploit (Z_mod_1lt il size); [lia | intro Hil].
assert_PROP (Zlength entries = size) as Hentries by entailer!.
assert (0 <= il mod size < Zlength entries) as Hil' by lia.
match goal with H : Forall _ _ |- _ => pose proof (Forall_Znth _ _
destruct (Znth (il mod size) entries) as (pki, pvi) eqn: Hpi; destruct Hptr.
forward; setoid_rewrite Hpi.
{ entailer!. }
assert (Zlength (rebase keys (hash k)) = size) as Hrebase.
{ rewrite Zlength_rebase; replace (Zlength keys) with size; auto; apply hash_range. }
forward_call atomic_load_int (pki, top, empty,

fun v : Z => AS * ghost_snap v (Znth (il mod size) 1g)).
{ rewrite !sepcon_assoc; apply sepcon_derives; [|cancel].

iIntros ">AS".

iDestruct ("AS") as (HT) "[hashtable Hclose]"; simpl.

iDestruct "hashtable" as (T) "((% & excl) & entries)".

rewrite -> @iter_sepcon_Znth' with (d := Inhabitant_Z) (i := il mod size) by

(try apply Cveric; rewrite Zlength_upto Z2Nat.id; lia).

erewrite Znth_upto by (rewrite -> ?Zlength_upto, Z2Nat.id; 1lia).

unfold hashtable_entry at 1.

rewrite Hpi.

destruct (Znth (il mod size) T) as (ki, vi) eqn: HHi.

_ Hil' H) as Hptr end.

keys : list Z

H5 : i1 "mod’ size = (i + hash k) "mod’ size

H6 : 0 = i < size

H7 : Zlength keys = size

H8 : Forall (A z : Z, (z # 0 A z # k)%type) (sublist 0 i (rebase keys (hash k)))
Hil : @ = il “mod’ size < size

Hentries Zlength entries = size

Hil' : 0 < il “mod’ size < Zlength entries

pki, pvi : val

Hpi : Znth (il “mod” size) entries = (pki, pvi)
H9 : isptr pki

H10 : isptr pvi

MORE_COMMANDS := abbreviate : statement
Hrebase : Zlength (rebase keys (hash k)) = size
(1/1)

semax Delta
(PROP ()
LOCAL (temp _i pki; temp _idx (vint (il "mod’ size)); lvar _ref tint v_ref;
temp _key (vint k); temp _value (vint v); gvars gv)

SEP (AS; data_at Tsh tint (vint 0) v_ref; data_at sh (tarray tentry size) entries (gv _m_entries);

iter_sepcon
(A i0 :
(upto (Z.to_nat i)))) ((_t'2 = _atom_load(_1i);
_probed_key = _t'2;)
MORE_COMMANDS) POSTCONDITION

Z, ghost_snap (Znth ((i0 + hash k) "mod’ size) keys) (Znth ((i0 + hash k) "mod" size) 1g)

Verified

Software
Toolchain

Using Iris in VST Ir*

* We now have custom ghost state, invariants, updates, and
all the relevant Iris tactics in VST

e Can import definitions like logical atomicity directly

- Intros i il keys; forward. forward.
rewrite -> sub_repr, and_repr; simpl.
rewrite -> Zland_two_p with (n := 14) by lia.

Hentries
Hil®

+a muu Urew ~ gxrcvo

Zlength entries = size
0 = il "mod” size < Zlength entries

replace (2 ~ 14) with size by (setoid_rewrite (proj2_sig has_size); auto). 5Ei"p;;ta Y?k ‘mod® size) entries = (pki, pvi)
exploit (Z_mod_1t il size); [lia | intro Hil]. HO 'Iisptr pki '
assert_PROP (Zlength entries = size) as Hentries by entailer!. HlOI' isptr pvi
asie;t (01<=.iﬁ qu :1ze1: Zlength eEtrles) as H;l'Fby {tai th Hil' H Hot q Hrebase : Zlength (rebase keys (hash k)) = size
match goat Wi U8 ForEtt _ _ I'_— => Ppose proo _(wIrEiL_AL = = = it) as Hptr end. Frame := [data_at Tsh tint (vint 0) v_ref; data_at sh (tarray tentry size) entries (gv _m_entries);
destruct (Znth (il mod size) entries) as (pki, pvi) eqn: Hpi; destruct Hptr. iter_sepcon - - - -
forward; setoid_rewrite Hpi. (A_i . 7
{ entailer!. } L . . <.
assert (Zlength (rebase keys (hash K)) = size) as Hrebase. N %20?;_:2aﬁa£22§?]((11152a;hr:é mod™ size) keys) (Znth ((i + hash k) “mod’ size) 1g))
{ rewrite Zlength_rebase; replace (Zlength keys) with size; auto; apply hash_range. } P = (l/E)
forward_call atomic_load _int (pki, top, empty, wpCH . B : ;
— - - - : AS" : 3 x : Z - option Z, hashtable x lg entries x

fun v Z => AS * ghost_snap v (Znth (1} mod size) 1g)). (hashtablz x g lg entries ={emgtygtop}=*
{ rewrite !sepcon_assoc; apply sepcon_derives; [|cancel]. AU << 33 x0 : Z - option Z, hashtable x0 g lg entries >>

iIntros ">AS". ' '

. @ top, empty

S << V¥ _ : (), hashtable (ma ies *

. . : , p_upd x0 k v) g lg entries emp, COMM Q >>)

iDestruct ("AS") as (HT) "[hashtable Hclose]"; simpl. EY = ; * _ _

iDestruct "hashtable" as (T) "((% & excl) & entries)". & ?_fy_j___f?:_????f??}?_f???j?sd x kv) g lg entries * emp ={empty, top}=+ Q)

rewrite -> @iter_sepcon_Znth' with (d := Inhabitant_Z) (i := il mod size) by |={empty}=>

(try apply Cveric; rewrite Zlength_upto Z2Nat.id; lia). EX (sho : share) (vO : Z)

erewrite Znth_upto by (rewrite -> ?Zlength_upto, Z2Nat.id; lia).
unfold hashtable_entry at 1.
rewrite Hpi.

!l (readable_share sh0 A repable_signed v0) && atomic_int_at sh0@ (vint vO) pki *

atomic_int_at sh0 (vint vO) pki -* (|={empty,top}=> AS * ghost_snap vO (Znth (il “mod" size) 1lg))

Iris In VST: Summary II’(*S \Slce);:\:'v::e

Toolchain

 All the concurrency features of Iris, in VST

* Foundational changes: ghost state in the model, weaker core axiom,
extension order for affine ghost state, fancy updates in the semantics

* Now we can prove atomic specs for concurrent C programs, using VST
for C code and switching to Iris tactics for concurrency reasoning

* Could be useful for other non-Iris verifiers that want Iris features
e Can now reconstruct ghost-state-based reasoning in VST, e.g. ReLoC

* Paper on arXiv, opam package cog-vst-iris

Verified

Ir (* S Software

Toolchain

Iris In VST: Summary

* Now we can prove atomic specs for concurrent C programs,
using VST for C code and switching to Iris tactics for concurrency

But:
* Concurrent soundness is still complicated

* We're reconstructing Iris features, and there’s always more we might
want to reconstruct (transfinite step-indexes, later credits, ...)

* We’re working in parallel to RefinedC and the whole Iris ecosystem

e What if VST was built on Iris instead?

Iris and VST

K

Proof mode
Custom ghost state
Invariants

Logical atomicity

Verified

Software
Toolchain

e Cisn’t garbage-collected, so logic shouldn’t be affine

We can use ORAs!

 Ownership can’t be “just ghost state”: it’s translated
to CompCert permissions and used for adequacy

Need a fancier relationship between physical state and

mapsto assertions

VST on Iris

Verified
Software

chain
[ris

* Replace VST’s foundations with Iris, rebuild the rest of VST on top, get Iris
features for free

Verified
Software

VST on Iris: “juicy” view II'*S

nain

 State interpretation: e 0 where o is a map from locations to values
* Maps-to: l = v is defined as o {[l := v]}

og x [V |—O'(l)=v

* In VST, these don’t coincide!

e Physical memory (CompCert) maps locations to values + permissions
(readable, writable, etc.)

* Logical memory maps locations to rmap resources + shares

* Semantics defined in terms of a “juicy mem” that includes both CompCert
mem and rmap, plus proof that they are coherent

Verified
Software

VST on Iris: “juicy” view % _ hain
Ir’s

* General views: parameterized by a relation R, give:

ea xob FRab

 In VST, we can choose R £ coherent, and get:

em * [»_ v Fcoherentmlmv

Verified
Software

VST on Iris: “juicy” view II'*S

nain

* General views: parameterized by a relation R, give:

ea xob FRab

 In VST, we can choose R £ coherent, and get:

em * [»_ v Fcoherentmlmv

Old VST: Vj.(l » v) (rmap_of j) — valid_pointer [(mem_of j)
VSTonlris: em=x*[w— v " valid_pointer [m ™

Verified
Software

VST on Iris: semantics 0
Ir’s

nain

* Iris: wp e {®} when either e is terminated in a state satisfying ®, or
S(o) > (e,o0) » (e',0') 2 S(c') xwpe' {D}
* VST defines safety similarly, except that there are two kinds of steps:

* Core steps are steps by the Clight semantics

» External calls call arbitrary external functions with provided pre- and
postconditions

» Safety was originally defined as a relation on juicy mems, but we can
rephrase it inside the logic analogously to wp

Verified
Software

Ir(%s nain

* Proved exactly the same triples for C statements (mod. Iris notation)

VST on Iris: program logic

* Proofs are about % the size of old versions

* #1 reduction: reasoning at the logic level instead of unfolding to the model
* #2 reduction: proof mode tactics

Verified
Software

VST on Iris: adequacy II'(*S

e Still in progress: should be the same paper proof, but in Iris terms

* Aim to prove as much as possible (probably everything!) in the logic
instead of unfolding to the model

* VST has complicated armature for lifting CompCert’s soundness to
concurrency; it should be easier with Iris, but basically the same

* We're long overdue for a better approach to compiler correctness for
concurrency! Happy to talk if you have ideas.

nain

Verified
Software

Ir(%s nain

* Still need to rebuild symbolic execution tactics and automation

VST on Iris: user interface

* Interaction mode 1: VST + Iris
* Can do anything we did before in VST in exactly the same way
* Drop into Iris proof mode as desired for invariants, atomics, etc.

* Interaction mode 2: Iris style
* Turn Hoare triples into WP format, stay in IPM the whole time
* Will require retooling VST’s automation (forward, etc.) to work on IPM goals
* More comfortable for Iris people, could adapt Diaframe

Verified

. 3
Conclusion software | [1'/'Q

Toolchain

* Iris in VST: mostly done
e Can prove logically atomic specs for C programs using Iris logic and tactics
* Takes cues from Iris, reuses some of it, rebuilds a lot more

* VST on Iris: looks like it’ll work!
* More expressive ghost state
* Can incorporate new lIris ideas: transfinite step-indexing, later credits, ...
* Integrate with other tools? Diaframe, RefinedC, ...
 What would you do with a CompCert C mode for Iris?

46

Verified
Software

VST on Iris: ownership II'*S hain

* Iris mapsto is simple: [=, v, where q is a positive fraction
* Any g is enough to read, 1 is required to write

» /ST uses tree shares, with 4 distinct permission levels (corresponding to
CompCert permission levels): nonempty, readable, writable, freeable

* Nonempty ownership gives knowledge of the location, but not its value!

Inductive shared :=
| YES (dqgq : dfrac) (rsh : readable dfrac dq) (v : agree V)
| NO (sh : shareO) (rsh : —-readable_share' sh).

*lw,vis {{I:=YESq_v]|}
* Also have | =, L, whichis {[I := NO q _]}

Verified
Software

VST on Iris: resources ¥
Ir’s

nain

* Model of VST: R £ loc — res, where res may include predicates
(“predicates in the heap”)

res 2 VALv|LKR|FUNAPQ

* Last two use “predicates in the heap”
e Butin Iris they don’t need to! We’ll come back to this

Verified
Software

VST on Iris: predicates in the heap % _ hain
Ir’s
* Model of VST: R £ loc — res, where res may include predicates
(“predicates in the heap”)

res 2 VALv|LKR|FUNAPQ

* We can take the predicates out of the heap, and use ghost
state/invariants for them instead

Verified
Software

VST on Iris: predicates in the heap % _ hain
Ir’s
* Model of VST: R £ loc — res, where res may include predicates
(“predicates in the heap”)

res 2 VALv | LK|FUNAPQ

* We can take the predicates out of the heap, and use ghost
state/invariants for them instead

e isLKIR A2 LKx*xinvR

Verified
Software

VST on Iris: predicates in the heap II$S hain

res £ VALv | LK|FUNAPQ

Inductive funspec := mk_funspec: typesig -> calling_convention ->
forall A (P: A -> mpred) (Q: A -> mpred), funspec.

[» FUN A P Q asserts that [is a function pointer w/ spec
Va: A, {P a} {0 a}

* We build an OFE for funspec (roughly isomorphic to
{A & (A - mpred) * (A - mpred)})

Verified
Software

VST on Iris: predicates in the heap II$S hain

*res 2 VAL v | LK | FUN

Inductive funspec := mk_funspec: typesig -> calling_convention ->
forall A (P: A -> mpred) (Q: A -> mpred), funspec.

[» FUN A P Q asserts that [is a function pointer w/ spec
Va: A, {P a} {0 a}

* We build an OFE for funspec (roughly isomorphic to
{A & (A - mpred) * (A - mpred)})

* DefineisFUN L f 2 [» FUN %o {[l .= f]}

* Analogous to invariant construction

	Slide 1: Integrating Iris into the Verified Software Toolchain, and vice versa
	Slide 2: The Verified Software Toolchain (VST)
	Slide 5
	Slide 6: Iris and VST
	Slide 7: Iris in VST
	Slide 8: Iris in VST
	Slide 9: VST on Iris
	Slide 10: Iris in VST
	Slide 12: VST + MoSeL
	Slide 13: VST + MoSeL
	Slide 14: VST + MoSeL
	Slide 15: VST + MoSeL
	Slide 16: Ghost State in VST
	Slide 17: Ghost State Updates in VST
	Slide 19: Invariants in VST
	Slide 20: Fancy Updates in VST
	Slide 21: Fancy Updates in VST
	Slide 22: Fancy Updates in VST
	Slide 23: Persistence in VST
	Slide 24: Persistence in VST
	Slide 25: Persistence in VST
	Slide 26: Using Iris in VST
	Slide 27: Using Iris in VST
	Slide 28: Iris in VST: Summary
	Slide 29: Iris in VST: Summary
	Slide 30: Iris and VST
	Slide 31: VST on Iris
	Slide 37: VST on Iris: “juicy” view
	Slide 38: VST on Iris: “juicy” view
	Slide 39: VST on Iris: “juicy” view
	Slide 40: VST on Iris: semantics
	Slide 42: VST on Iris: program logic
	Slide 43: VST on Iris: adequacy
	Slide 44: VST on Iris: user interface
	Slide 45: Conclusion
	Slide 46
	Slide 47: VST on Iris: ownership
	Slide 48: VST on Iris: resources
	Slide 49: VST on Iris: predicates in the heap
	Slide 50: VST on Iris: predicates in the heap
	Slide 51: VST on Iris: predicates in the heap
	Slide 52: VST on Iris: predicates in the heap

