

1

Reasoning about enclaved execution
and attestation in Cerise

Thomas Van Strydonck Dominique Devriese

KU Leuven

Enclaves are like black boxes in memory

2

App App Enclave

Operating System

Hardware

Attestation: authentication makes enclaves useful

3

What’s in
the box?!

Widevine
is running

Attestation: authentication makes enclaves useful

4

What’s in
the box?!

5

Attester Attestee
Attest

Untrusted

App App Enclave

Operating System

Hardware

How do we formalize the security guarantees
obtained from attestation?

EuroS&P 2023

6

CHERI-TrEE
Hardware capabilities

Concretely: flexible enclaved execution system

How do we formalize the security guarantees obtained
from attestation?
How do we formalize the security guarantees obtained
from local attestation?

7

Cerise

Overview

8

● Building Blocks of Enclaved Execution

● Formal Reasoning

● Status & Discussion

Overview

9

● Building Blocks of Enclaved Execution

● Formal Reasoning

● Status & Discussion

1. Exclusive access

At least during initialization

10

Interrupt Handler

2. Controlled invocation

Entry points

11

3. Secure communication

Efficient

🔒

🔒

��

12

4. Attestation

● Authentication: identity → Hash
● Secure look-up (remote: reuse)

13

Overview

14

● Building Blocks of Enclaved Execution

● Formal Reasoning [WIP]

● Status & Discussion

Running example

15

Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest

n : ℕ

𝜆n. assert_even(n)

assert ↦ True

𝜆n. 2 * n

Protocol:
“output even numbers”

Building blocks of enclaved execution

1. Exclusive access

2. Controlled invocation

3. Local secure communication

4. Local attestation

16

Capabilities → Cerise

Issue: pointers grant unrestricted access to memory

addr

17

r0

end

base

addr

18

Hardware capabilities restrict authority

end

base

end

base

addr

perm

R/W/X/...

19

perm

Hardware capabilities restrict authority

end

base

end

base

 tag
addr

perm

R/W/X/...

perm

20

Hardware capabilities are unforgeable

Enclave Untrusted

Cap

21

CapCap

?

Spatial memory safety: protection against adversary

E

Enclave Untrusted

Cap

22

CapCap

Enter capabilities implement compartmentalization

Cerise: logical relations to reason about untrusted code

23

Enclave Untrusted
𝓔

𝓥

Universal contract: any code is safe to execute (𝓔)

Invariantsassert ↦ True

1.
Exclusive access

Cerise: Logical relations to reason about untrusted code

24

2. Controlled Invocation

1. Exclusive access

2. Controlled invocation

3. Local secure communication

4. Local attestation

Building blocks of enclaved execution

25

Capabilities → Cerise

1. Establishing exclusive access

26

 Untrusted

Cerise lacks revocation…

Client
Enclave

27

Cenclave

r1 ...

r2 ...

...

PCC ...

...

Start-up cost ↔ run-time efficiency + flexibility

Establishing exclusive access: memory sweep

Logical layer to reason about memory sweep

28

Logical Memory: LAddr ⇀ LWord
Logical Registers: Reg → LWord

Physical Memory: Addr → Word
Physical Registers: Reg → Word

“Memory reachable from Regs and
LRegs is isomorphic”

Logical layer to reason about memory sweep

29

Sweep succeeds? Mint + rewrite in LRegsSweep succeeds?

Logical Memory: LAddr ⇀ LWord
Logical Registers: Reg → LWord

“Memory reachable from Regs and
LRegs is isomorphic”

Sealed capabilities

Building blocks of enclaved execution

1. Exclusive access

2. Controlled invocation

3. Local secure communication

4. Local attestation

30

Sealed capabilities implement symbolic crypto

● Encrypt

● Sign

31

🔒_enc

🔒_sign

Unseal(🔒_enc)

Seal(🔒_sign)

Seal(🔒_enc)

Unseal(🔒_sign)

Cenclave

Running exampleAttach a protocol to each sealing key

Protocol:
“output even numbers”

32

Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest

n : ℕ

𝜆n. assert_even(n)

assert ↦ True

𝜆n. 2 * n

Psign(c : Cap) = ∃ n. c ↦ 2 * n

Signing

Encryption

Resource algebra for protocols

33

CanAlloc k Pred k P==∗

Pred k P -∗ Pred k P' -∗ (∀ x. ▷ (P x ≡ P' x))

Reasoning about sealed capabilities

34

𝓥(sealed(w,k)) =
(∃ P. Persistent P ∗ Pred k P ∗ ▷ P w)

Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest

Running example

35

Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest

n : ℕ

𝜆n. assert_even(n)

assert ↦ True

𝜆n. 2 * n

Psign(c : Cap) = ∃ n. c ↦ 2 * n

Signing

How does client know that Psign is used?

Building blocks of enclaved execution

1. Exclusive access

2. Controlled invocation

3. Local secure communication

4. Local attestation

36

Operational aspects of attestation

37

Cenclave ..
.

..
.

I 🔒_enc,🔒_sign

TCB

CenclaveI = hash()

IdentityLookup 🔒

38

Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest

n : ℕ

assert_even(2 * n)

assert ↦ True

2 * n

Psign(c : Cap) = ∃ n. c ↦ 2 * n

Signing

Reasoning about attestation: establish Psign

Identity(DE) = I custom_Psign :
Identity ⇀ (Word → iProp)

custom_Psign(I) = Psign

Pred(ksign,Psign)

𝓥(sealed(w,ksign)) =
(∃ P. Persistent P ∗ Pred ksign P ∗ ▷ P w)

(…) ∀ enclaves. (Lookup(k) = I ∗
custom_Psign(I) = P) -∗ Pred(k,P)

ksignLookup(ksign) = I

*Collision-free

39

Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest

n : ℕ

assert_even(2 * n)

assert ↦ True

2 * n

Psign(c : Cap) = ∃ n. c ↦ 2 * n

Signing

Reasoning about attestation: initialize enclave

Inew ∊ dom(custom_Psign) custom_Psign :
Identity ⇀ (Word → iProp)

custom_Psign(I) = Psign ✔

Psign =
custom_Psign(I)

Psign = 𝓥

❌

(…) ∀ enclaves. (Lookup(k) = I ∗
custom_Psign(I) = P) -∗ Pred(k,P)

Overview

40

● Building Blocks of Enclaved Execution

● Formal Reasoning

● Status & Discussion

1. Exclusive access

2. Controlled invocation

3. Local attestation

4. Local secure communication

Status of reasoning about enclaved execution

41

WIP (Memory Sweep)

✔

✔
WIP

● ←←Examples→→
○ Multiple enclaves/protocols, caller attestation

○ Binary Cerise: confidentiality

○ Verify interrupts

● ←←Examples→→
○ Multiple enclaves/protocols, caller attestation

○ Binary Cerise: confidentiality

○ Verify interrupts

● Remote case (Asserts)
○ Probabilistic model?

○ Hash function

● ←←Examples→→
○ Multiple enclaves/protocols, caller attestation

○ Binary Cerise: confidentiality

○ Verify interrupts

● Remote case (Asserts)
○ Probabilistic model?

○ Hash function

● Generalize?
○ Keystone

○ Sancus

Future work

42

43

