Reasoning about enclaved execution
and attestation in Cerise

Thomas Van Strydonck Dominique Devriese

KU Leuven

Enclaves are like black boxes in memory

Enclave

Operating System

Hardware

Attestation: authentication makes enclaves useful

What's in
the box?!

==

O WIDEVINE :
Go 3Ic

=

NETF

LIX

Attestation: authentication makes enclaves useful

What's in
the box?!

How do we formalize the security guarantees
obtained from attestation?

Att Attestee

App | | App Enclave

Operating System

Hardware

oncretely: flexible enclaved execution system

CHERI-TrEE

CHERI-TrEE: Flexible enclaves on capability machines

Thomas Van Srrydonck**‘, Job Noorman*, Jennifer Jackson', Leonardo Alves Dias’
Robin Vanderstraeten?, David Oswald', Frank Piessens*, Dominique Devriese*

*KU Leuven " Univ

Abstract—This paper studies the integration of two successful
hardware-supported security mechanisms: capabilities and
enclaved execution. Capabilities are a powerful and flexible
security mechanism for implementing fine-grained memory
access control and compartmentalizing untrusted or buggy
software components. Capabilities have a long history but
have gained significant momentum recently, as evidenced by
ARM’s experimental Morello processor that supports the
Capability Hardware Enhanced RISC Instructions (CHERI).
Enclaved execution is a popular mechanism for dynamically
creating Trusted Execution Environments (TEEs), called
enclaves. Enclaves are isolated execution contexts that protect
the integrity and confidentiality of software in the enclave
(even against compromised system software) and that sup-
port attestation.

Integrating capabilities and enclaved execution in 2
gle processor is challenging because they overlap par

sin-

11}

sity of Birmingham *Vrije Universiteit Brussel

software components. Capability machines implement the
concept of capabilities at the machine code level: they
provide hardware support for capabilities by defining an
instruction set architecture (ISA) that provides access to
system memory only through memory capabilities, a kind
of hardware-supported fat pointers. The ISA is designed
to ensure that software can only create capabilities that
represent a subset of the authority that the software al-
ready holds. Hence, capabilities are a secure basis for
implementing memory access control and isolation. Next
to memory capabilities, capability machines can support
a wide variety of other kinds of capabilities, including,
for example, object capabilities that can control access
to software defined objects, or sealing capabilities that
can symbolically encrypt or decrypt other capabilities.
Capability machines have a long history [I], but have
gained significant momentum over the last decade with,
for instance, the development of the CHERI system [2],

Hardware capabilities

How do we formalize the security guarantees obtained
from local attestation?

erise

Irisiy

Overview

e Building Blocks of Enclaved Execution
e Formal Reasoning

e Status & Discussion

Overview

¢ Building Blocks of Enclaved Execution
e Formal Reasoning

e Status & Discussion

1. Exclusive access

Interrupt Handler?

_/

At least during initialization

10

2. Controlled invocation

X

Entry points

X

7

11

3. Secure communication

\I/ L

_—
N
S~

Efficient

lll o

lll o

12

4. Attestation

Il o

N

N

e Authentication: identity - Hash

lll o

lll o

e Secure look-up (remote: reuse)

13

Overview

e Building Blocks of Enclaved Execution
¢ Formal Reasoning [WIP]

e Status & Discussion

14

Running example

Attest

>

Client Enclave

Doubling Enclave

Q An. assert_even(n)
assert — True

N

>

r'd

An.2*n

Protocol:

“output even numbers”

15

Building blocks of enclaved execution

1. Exclusive access

Capabilities = Cerise
2. Controlled invocation

3. Local secure communication

4. Local attestation

16

Issue: pointers grant unrestricted access to memory

ro

addr

17

Hardware capabilities restrict authority

/ base

18

Hardware capabilities restrict authority

base
/ end
addr \

perm

R/W/X/ ...
A

!

19

Hardware capabilities are unforgeable

tag

base
end
addr

perm

R/W/X/ ...

20

Spatial memory safety: protection against adversary

Enclave

Untrusted

Cap

21

Enter capabilities implement compartmentalization

Enclave

Untrusted

Cap

22

Cerise: logical relations to reason about untrusted code

Enclave) Untrusted
- > E
assert — True
safelto execute (£)

23

Cerise: Logical relations to reason about untrusted code

(

N
Mot
> >

>

V(RW/RWX, b, e, —)

V(
V(E,b,e,a)
(
(

| V(RO/RX,b,e,—) =

2. Controlled Invocation

Building blocks of enclaved execution

1. Exclusive access

Capabilities = Cerise
2. Controlled invocation

3. Local secure communication

4. Local attestation

25

1. Establishing exclusive access

Client Untrusted
Enclave
\\ j} . .
' Cerise lacks revocation...
V(RW/RWX, b, e, =) = K, e 0 | 3w, |(a = w)p V(w)

26

Establishing exclusive access: memory sweep

enclave

A —

27

Logical layer to reason about memory sweep

Logical Memory: LAddr -~ LWord
Logical Registers: Reg - LWord

“Memory reachable from Regs and
LRegs is isomorphic”

2011 26th Annual [g====a

. . Physical Memory: Addr - Word
Separation Logic Physical Registers: Reg > Word

Chung-Kil Hur Derek Dreyer Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbriicken, Germany
E-mail: {gil, dreyer, viktor}@mpi-sws.org 28

Logical layer to reason about memory sweep

Logical Memory: LAddr -~ LWord
Logical Registers: Reg - LWord

“Memory reachable from Regs and
LRegs is isomorphic”

V(RW/RWX, b,e, —,v) = 3k Jw, (a,v g w) * V(w)

a€lb,e)

Sweep succeeds? Mint @, v’ o, W + rewrite in LRegs

29

Building blocks of enclaved execution

1. Exclusive access

2. Controlled invocation

3. Local secure communication

4. Local attestation

Sealed capabilities

30

Sealed capabilities implement symbolic crypto

e Encrypt _enc
e Sign _sign
enclave
A
(4 A)

\ Unseal({~ _enc)

s | &
305
—_—
4——
Seal({~ _enc)

31

Attach a protocol to each sealing key

Client Enclave

Attest
>

Logical Relations for Encryption
(Extended Abstract)”

Eijiro Sumii'
University of Tokyo

sumii@saul.cis.upenn.edu

Abstract

The theory of rclational parametricity and its logical rela-
tions proof technique are powerful tools for reasoning about
information hiding in the polymorphic \-calculus. We in-
vestigate the application of these tools in the security do-
main by defining a cryptographic A-calculus—an extension
of the standard simply typed \-calculus with primitives for
encryption, decryption, and key generation—and introduc-
ing logical relations for this calculus that can be used to
prove behavioral equivalences between programs that rely
on encryption.

We illustrate the framework by encoding some simple se-
curity protocols, including the Needham-Schroeder public-
key protocol. We give a natural account of the well-known
attack on the original protocol and a straightforward proof
that the improved variant of the protocol is secure.

Benjamin C. Pierce
University of Pennsylvania
becpiercelecis.upenn.edu

programming languages—the concept of relational para-
metricity (23] and its accompanying logical relations proof
method—in the domain of security protocols.

We begin by defining a cryptographic A-calculus, an ex-
tension of the ordinary simply typed A-calculus with primi-
tives for encryption, decryption and key generation. (One
can imagine a large family of different cryptographic A-
calculi, each based on a different set of encryption primi-
tives. For the present study, we use the simplest member
of this family—the one where the primitives are assumed to
provide perfect shared-key encryption.) This calculus offers
a suitable mix of structures for our investigation: encryp-
tion primitives, since our goal is to reason about programs
from the security domain, together with the type structure
on which logical relations are built. We now proceed in
three steps:

3 ewp. o

Doubling Enclave

Prc

Signing

Psign

An.2*n

(c:Cap) =

3 nc—2*%n

32

Resource algebra for protocols

CanAlloc kR == Pred R P

Pred R P -* Pred R P'-* (V x.> (P x = P'x))

33

Reasoning about sealed capabilities

W(sealed(w,R)) =
(3 P. Persistent P* Pred R P *> P w)

Client Enclave

Attest

>

Doubling Enclave

34

How does client Rnow that Psign Is used?

Client Enclave

Attest

>

Doubling Enclave

assert = True

Q An. assert_even(n) /

N

>

P

Signing

sign

An.2*n

(c:Cap) =

3 nc—2*%n

35

Building blocks of enclaved execution

1. Exclusive access
2. Controlled invocation

3. Local secure communication

4. Local attestation

36

Operational aspects of attestation

enclave

TCB

l |d it P

| = hash(

enclave)

_enc,

_sign

37

Reasoning about attestation: establish P_ on

Client Enclave

Attest

» Doubling Enclave

Identity(DE) = | *Collision-free

Lookup(ksign) = |

Pred(ksign,P_)

sign

Wsealed(w,ksign)) =

custom_Psign :
ldentity -~ (Word - iProp)

custom_Psign(l) = Peien

(...) ¥ enclaves. (Lookup(R) = I *
custom_Psign(l) = P) -* Pred(R,P)

(3 P. Persistent P * Pred ksign P * > P w)

38

Reasoning about attestation: initialize enclave

Client Enclave

Attest

» Doubling Enclave

I ., € dom(custom_Psign)

n

V/\X

IDsign - P. =)

custom_ Psign(/) sign

custom_Psign :
ldentity -~ (Word - iProp)

custom_Psign(l) = Peicn

(...) ¥ enclaves. (Lookup(R) = I *
custom_Psign(l) = P) -* Pred(R,P)

39

Overview

e Building Blocks of Enclaved Execution
e Formal Reasoning

e Status & Discussion

40

Status of reasoning about enclaved execution

1. Exclusive access WIP (Memory Sweep)
2. Controlled invocation V
3. Local attestation WIP

4, Local secure communication V

41

Future work

e < <Examples—>-

o Multiple enclaves/protocols, caller attestation
o Binary Cerise: confidentiality

o Verify interrupts
e Remote case (Assefrts)

o Probabilistic model?

o Hash function
e Generalize?

o Keystone

o Sancus

42

43

