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Enclaves are like black boxes in memory
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Attestation: authentication makes enclaves useful
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What’s in 
the box?!

Widevine 
is running



Attestation: authentication makes enclaves useful
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What’s in 
the box?!
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How do we formalize the security guarantees 
obtained from attestation?



EuroS&P 2023

6

CHERI-TrEE
Hardware capabilities

Concretely: flexible enclaved execution system



How do we formalize the security guarantees obtained 
from attestation?
How do we formalize the security guarantees obtained 
from local attestation?

7

Cerise



Overview
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● Building Blocks of Enclaved Execution

● Formal Reasoning
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1. Exclusive access 

At least during initialization
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Interrupt Handler



2. Controlled invocation 

Entry points
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3. Secure communication 

Efficient

🔒

🔒

��
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4. Attestation

● Authentication: identity → Hash
● Secure look-up (remote: reuse)
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Overview
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● Building Blocks of Enclaved Execution

● Formal Reasoning [WIP]

● Status & Discussion



Running example
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Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest

n : ℕ

𝜆n. assert_even(n)

assert ↦ True

𝜆n. 2 * n

Protocol: 
“output even numbers”



Building blocks of enclaved execution

1. Exclusive access

2. Controlled invocation

3. Local secure communication

4. Local attestation
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Capabilities → Cerise



Issue: pointers grant unrestricted access to memory

addr
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r0



end

base

addr
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Hardware capabilities restrict authority



end

base

end

base

addr

perm

R/W/X/...
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perm

Hardware capabilities restrict authority



end

base

end

base

 tag
addr

perm

R/W/X/...

perm
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Hardware capabilities are unforgeable



Enclave Untrusted

Cap
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CapCap

?

Spatial memory safety: protection against adversary



E

Enclave Untrusted

Cap
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CapCap

Enter capabilities implement compartmentalization



Cerise: logical relations to reason about untrusted code 
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Enclave Untrusted
𝓔

𝓥

Universal contract: any code is safe to execute (𝓔)

Invariantsassert ↦ True

1.
Exclusive access



Cerise: Logical relations to reason about untrusted code 
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2. Controlled Invocation



1. Exclusive access

2. Controlled invocation

3. Local secure communication

4. Local attestation

Building blocks of enclaved execution
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Capabilities → Cerise



1. Establishing exclusive access
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                                         Untrusted

Cerise lacks revocation…

Client 
Enclave
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Cenclave

r1 ...

r2 ...

...

PCC ...

...

Start-up cost ↔ run-time efficiency + flexibility 

Establishing exclusive access: memory sweep



Logical layer to reason about memory sweep
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Logical Memory: LAddr ⇀ LWord
Logical Registers: Reg → LWord

Physical Memory: Addr → Word
Physical Registers: Reg → Word

“Memory reachable from Regs and 
LRegs is isomorphic”



Logical layer to reason about memory sweep
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Sweep succeeds? Mint                              + rewrite in LRegsSweep succeeds?

Logical Memory: LAddr ⇀ LWord
Logical Registers: Reg → LWord

“Memory reachable from Regs and 
LRegs is isomorphic”



Sealed capabilities

Building blocks of enclaved execution

1. Exclusive access

2. Controlled invocation

3. Local secure communication

4. Local attestation
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Sealed capabilities implement symbolic crypto

● Encrypt 

● Sign

31

🔒_enc

🔒_sign

Unseal(🔒_enc)

Seal(🔒_sign)

Seal(🔒_enc)

Unseal(🔒_sign)

Cenclave



Running exampleAttach a protocol to each sealing key

Protocol: 
“output even numbers”
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Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest

n : ℕ

𝜆n. assert_even(n)

assert ↦ True

𝜆n. 2 * n

Psign(c : Cap) = ∃ n. c ↦ 2 * n 

Signing

Encryption



Resource algebra for protocols

33

CanAlloc k Pred k P==∗

Pred k P -∗ Pred k P' -∗ (∀ x. ▷ (P x ≡ P' x))



Reasoning about sealed capabilities
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𝓥(sealed(w,k)) = 
(∃ P.  Persistent P ∗ Pred k P ∗ ▷ P w)

Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest



Running example
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Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest

n : ℕ

𝜆n. assert_even(n)

assert ↦ True

𝜆n. 2 * n

Psign(c : Cap) = ∃ n. c ↦ 2 * n 

Signing

How does client know that Psign is used?



Building blocks of enclaved execution

1. Exclusive access

2. Controlled invocation

3. Local secure communication

4. Local attestation
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Operational aspects of attestation
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Cenclave ..
.

..
.

I 🔒_enc,🔒_sign

TCB

CenclaveI  =  hash(    ) 

IdentityLookup 🔒
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Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest

n : ℕ

assert_even(2 * n)

assert ↦ True

2 * n

Psign(c : Cap) = ∃ n. c ↦ 2 * n 

Signing

Reasoning about attestation: establish Psign

Identity(DE) = I custom_Psign : 
Identity ⇀ (Word → iProp)

custom_Psign(I) = Psign 

Pred(ksign,Psign)

𝓥(sealed(w,ksign)) = 
(∃ P.  Persistent P ∗ Pred ksign P ∗ ▷ P w)

(…) ∀ enclaves. (Lookup(k) = I ∗  
custom_Psign(I) = P) -∗ Pred(k,P)

ksignLookup(ksign) = I

*Collision-free
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Enclave 2Doubling EnclaveEnclave 1Client Enclave
Attest

n : ℕ

assert_even(2 * n)

assert ↦ True

2 * n

Psign(c : Cap) = ∃ n. c ↦ 2 * n 

Signing

Reasoning about attestation: initialize enclave

Inew ∊ dom(custom_Psign) custom_Psign : 
Identity ⇀ (Word → iProp)

custom_Psign(I) = Psign ✔

Psign = 
custom_Psign(I)

Psign = 𝓥

❌

(…) ∀ enclaves. (Lookup(k) = I ∗  
custom_Psign(I) = P) -∗ Pred(k,P)



Overview
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● Building Blocks of Enclaved Execution

● Formal Reasoning

● Status & Discussion



1. Exclusive access

2. Controlled invocation

3. Local attestation

4. Local secure communication

Status of reasoning about enclaved execution
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WIP (Memory Sweep)

✔

✔
WIP



● ←←Examples→→
○ Multiple enclaves/protocols, caller attestation

○ Binary Cerise: confidentiality

○ Verify interrupts
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● ←←Examples→→
○ Multiple enclaves/protocols, caller attestation

○ Binary Cerise: confidentiality

○ Verify interrupts

● Remote case (Asserts)
○ Probabilistic model?

○ Hash function

● Generalize?
○ Keystone

○ Sancus

Future work
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