
Outcome Separation Logic

Local Reasoning for Correctness and Incorrectness with Computational E�ects

Noam Zilberstein, Cornell University

(Based on joint work with Angelina Saliling, Alexandra Silva, and Derek Dreyer)

Iris Workshop

Saarbrücken, Germany. May 23, 2023

Overview

I Since Hoare Logic was introduced, new programming paradigms have arisen:

I Computational e�ects: nondeterminism, randomization, quantum computation,

concurrency, . . .

I Incorrectness Reasoning

I Can a single logical foundation capture it all?

I What does a Separation Logic based on this look like?

Overview

I Since Hoare Logic was introduced, new programming paradigms have arisen:

I Computational e�ects: nondeterminism, randomization, quantum computation,

concurrency, . . .

I Incorrectness Reasoning

I Can a single logical foundation capture it all?

I What does a Separation Logic based on this look like?

Overview

I Since Hoare Logic was introduced, new programming paradigms have arisen:

I Computational e�ects: nondeterminism, randomization, quantum computation,

concurrency, . . .

I Incorrectness Reasoning

I Can a single logical foundation capture it all?

I What does a Separation Logic based on this look like?

Computational E�ects and Incorrectness

Nondeterministic Bugs

I Malloc is nondeterministic, it might return null.

{ok : emp}
x := malloc() #
[x] ← 1

{(ok : x ↦→ 1) ∨ (er : x = null)}

I Does this specification characterize the bug?

I No! We don’t know if the crash state is reachable

Nondeterministic Bugs

I Malloc is nondeterministic, it might return null.

{ok : emp}
x := malloc() #
[x] ← 1

{(ok : x ↦→ 1) ∨ (er : x = null)}

I Does this specification characterize the bug?

I No! We don’t know if the crash state is reachable

Incorrectness Logic

I Incorrectness Logic Semantics

� [P] C [Q] i� ∀𝜏 � Q. ∃𝜎 � P . 𝜏 ∈ JCK (𝜎)

I Every state satisfying the post is reachable from some state satisfying the pre

I Does this spec characterize the bug?

[ok : emp]
x := malloc() #
[x] ← 1
[(ok : x ↦→ 1) ∨ (er : x = null)]

Incorrectness Logic

I Incorrectness Logic Semantics

� [P] C [Q] i� ∀𝜏 � Q. ∃𝜎 � P . 𝜏 ∈ JCK (𝜎)

I Every state satisfying the post is reachable from some state satisfying the pre

I Does this spec characterize the bug?

[ok : emp]
x := malloc() #
[x] ← 1
[(ok : x ↦→ 1) ∨ (er : x = null)]

Dropping Disjuncts

I The following (more concise) spec is also valid

[ok : emp]
x := malloc() #
[x] ← 1
[(ok : x ↦→ 1) ∨ (er : x = null)]

=⇒

[ok : emp]
x := malloc() #
[x] ← 1
[er : x = null]

I Static analyzers do not have to traverse all program paths

Program Logics—Comparison

I Incorrectness Logic:

I Specify true bugs
I Drop program paths for e�iciency

I . . . but specialized to nondeterminism

I Hoare Logic:

I Can be used for correctness

I Supports many types of e�ects (e.g., probabilistic programs)

I . . . but cannot identify bugs

I Can we get the best of both worlds?

Program Logics—Comparison

I Incorrectness Logic:

I Specify true bugs
I Drop program paths for e�iciency

I . . . but specialized to nondeterminism

I Hoare Logic:

I Can be used for correctness

I Supports many types of e�ects (e.g., probabilistic programs)

I . . . but cannot identify bugs

I Can we get the best of both worlds?

Outcome Logic

I Similar to Hoare Logic, but pre/post refer to collections of states

� 〈𝜑〉 C 〈𝜓 〉 i� ∀m. m � 𝜑 =⇒ JCKm � 𝜓

I What is m?

Nontermination: m ∈ State + {⊥}
Nondeterminism: m ∈ Set(State)
Randomization: m ∈ Dist(State)
Exceptions: m ∈ State + E

...

Outcome Assertions

I Syntax

𝜑 ::= > | >⊕ | 𝜑 ∨𝜓 | 𝜑 ⊕𝜓 | 𝜖 : P 𝜖 ::= ok | er
I Semantics (Nondeterministic Interpretation):

S � >⊕ i� S = ∅
S � 𝜑 ⊕𝜓 i� ∃S1, S2. S = S1 ∪ S2 and S1 � 𝜑 and S2 � 𝜓
S � (𝜖 : P) i� S ≠ ∅ and ∀𝜎 ∈ S. 𝜎 � (𝜖 : P)

...

Specifying a Bug

I Does this spec characterize the bug?

〈ok : emp〉
x := malloc() #
[x] ← 1
〈(ok : x ↦→ 1) ⊕ (er : x = null)〉

I Yes!

Specifying a Bug

I Does this spec characterize the bug?

〈ok : emp〉
x := malloc() #
[x] ← 1
〈(ok : x ↦→ 1) ⊕ (er : x = null)〉

I Yes!

Dropping Outcomes

I We can also drop some of the program paths

〈ok : emp〉
x := malloc() #
[x] ← 1
〈(ok : x ↦→ 1) ⊕ (er : x = null)〉

=⇒

〈ok : emp〉
x := malloc() #
[x] ← 1
〈(er : x = null) ⊕ >〉

Probabilistic Outcomes

I Outcomes are more general than nondeterminism

I We can reason probabilistically about unreliable network connections

〈ok : true〉
x := ping(192.0.2.1)
〈(ok : x = 200) ⊕99% (er : x = 500)〉

The Frame Rule

The Outcome Separating Conjunction

I A new operator 𝜑 ~ F is defined inductively:

> ~ F , >
>⊕ ~ F , >⊕

(𝜑 ∨𝜓) ~ F , (𝜑 ~ F) ∨ (𝜓 ~ F)
(𝜑 ⊕𝜓) ~ F , (𝜑 ~ F) ⊕ (𝜓 ~ F)
(𝜖 : P) ~ F , 𝜖 : P ∗ F

The Outcome Logic Frame Rule

I The usual Frame Rule:

{P} C {Q} mod(C) ∩ fv(F) = ∅
{P ∗ F} C {Q ∗ F}

Frame

I What we want:

〈𝜑〉 C 〈𝜓 〉 mod(C) ∩ fv(F) = ∅
〈𝜑 ~ F〉 C 〈𝜓 ~ F〉

Frame

Memory Allocation and the Frame Rule

I Suppose allocation is deterministic:

{emp} x := alloc() {x = 1}

I The address of x is 1, since that is the first address

I Now, we use the frame rule:

{emp} x := alloc() {x = 1}
{y ↦→ 2} x := alloc() {y ↦→ 2 ∧ x = 1}

Frame

I Was this inference valid?

Memory Allocation and the Frame Rule

I Suppose allocation is deterministic:

{emp} x := alloc() {x = 1}

I The address of x is 1, since that is the first address

I Now, we use the frame rule:

{emp} x := alloc() {x = 1}
{y ↦→ 2} x := alloc() {y ↦→ 2 ∧ x = 1}

Frame

I Was this inference valid?

Nondeterminism and the Frame Rule

I Idea: make memory allocation nondeterministic

I We cannot say that x = 1, we can only say:

{emp} x := alloc() {x = 1 ∨ x = 2 ∨ . . .}

I A�er applying the frame rule, this is still true

{y ↦→ 2} x := alloc() {y ↦→ 2 ∧ (x = 1 ∨ x = 2 ∨ . . .)}

I Problem: OL supports execution models other than nondeterminism

Nondeterminism and the Frame Rule

I Idea: make memory allocation nondeterministic

I We cannot say that x = 1, we can only say:

{emp} x := alloc() {x = 1 ∨ x = 2 ∨ . . .}

I A�er applying the frame rule, this is still true

{y ↦→ 2} x := alloc() {y ↦→ 2 ∧ (x = 1 ∨ x = 2 ∨ . . .)}

I Problem: OL supports execution models other than nondeterminism

Must and May Properties

I Separation Logic only supports must properties
I Outcome Logic also supports may properties

〈ok : emp〉
x := malloc() #
[x] ← 1
〈(er : x = null) ⊕ >〉

May Properties and Memory Allocation

I Even with nondeterministic allocation, the following is valid:

〈ok : emp〉 x := alloc() 〈(ok : x = 1) ⊕ >〉

I Using the frame rule, we get something that is not true

〈ok : y ↦→ 2〉 x := alloc() 〈(ok : y ↦→ 2 ∧ x = 1) ⊕ >〉

The Solution

I To make memory allocation local, assertions cannot mention heap addresses

I Lemma: Outcome Logic assertions are invariant to heap permutations

∀𝜋. m � 𝜑 =⇒ 𝜋 (m) � 𝜑

Safe Preconditions

I Separation Logic requires preconditions to be safe
I If not, the following would be valid:

{emp} [x] ← 1 {emp}

I Now, using the frame rule, we get

{x ↦→ 2} [x] ← 1 {x ↦→ 2}

I Which is clearly false!

Safety in Outcome Logic

I Safe preconditions are undesirable in Outcome Logic

I Bugs do not require us to look at all paths

〈ok : x = null〉 ([x] ← 1) + C 〈(er : x = null) ⊕ >〉

I If the pre had to be safe, we would need to inspect C

Outcome Logic + Concurrency

Concurrent Outcomes

I Outcomes correspond to possible interleavings

〈ok : x ↦→ −〉
[x] ← 1 ‖ [x] ← 2
〈(ok : x ↦→ 1) ⊕ (ok : x ↦→ 2)〉

The Exchange Law

I From Concurrent Kleene Algebra:

(C1 ‖ C ′1) # (C2 ‖ C ′2) ≤ (C1 # C2) ‖ (C ′1 # C ′2)

I In Outcome Logic:

〈𝜑〉 (C1 ‖ C ′1) # (C2 ‖ C ′2) 〈𝜓 〉
〈𝜑〉 (C1 # C2) ‖ (C ′1 # C ′2) 〈𝜓 ⊕ >〉

Exchange

Concurrent Bugs

I The following program will crash in some interleavings

[x] ← 1 # free(x) #
[x] ← 2 skip

I The exchange law can partially sequentialize the program

.

.

.

〈ok : x ↦→ −〉 ([x] ← 1 ‖ free(x)) # ([x] ← 2 ‖ skip) 〈er : x 6↦→〉
〈ok : x ↦→ −〉 ([x] ← 1 # [x] ← 2) ‖ (free(x) # skip) 〈(er : x 6↦→) ⊕ >〉

Exchange

I Complete the proof using all the Iris machinery

Conclusion

I OL is sound for correctness and incorrectness with e�ects

I The OL frame rule allows e�ects and dropping paths

I Future work: OL + concurrency (with Iris)

I Further reading at cs.cornell.edu/~noamz
I Outcome Logic: A Unified Foundation for Correctness and Incorrectness Reasoning

[OOPSLA’23]

I Outcome Separation Logic: Local Reasoning for Correctness and Incorrectness with

Computational E�ects [arXiv]

I A lot more cool stu�!

I Algebraic semantics based on semirings

I Relative completeness proof

I OL subsumes Hoare Logic, probabilistic Hoare Logic, etc

I Symbolic execution using bi- and tri-abduction

	Computational Effects and Incorrectness
	The Frame Rule
	Outcome Logic + Concurrency

