
Outcome Separation Logic

Local Reasoning for Correctness and Incorrectness with Computational Eects

Noam Zilberstein, Cornell University

(Based on joint work with Angelina Saliling, Alexandra Silva, and Derek Dreyer)

Iris Workshop

Saarbrücken, Germany. May 23, 2023

Overview

I Since Hoare Logic was introduced, new programming paradigms have arisen:

I Computational eects: nondeterminism, randomization, quantum computation,

concurrency, . . .

I Incorrectness Reasoning

I Can a single logical foundation capture it all?

I What does a Separation Logic based on this look like?

Overview

I Since Hoare Logic was introduced, new programming paradigms have arisen:

I Computational eects: nondeterminism, randomization, quantum computation,

concurrency, . . .

I Incorrectness Reasoning

I Can a single logical foundation capture it all?

I What does a Separation Logic based on this look like?

Overview

I Since Hoare Logic was introduced, new programming paradigms have arisen:

I Computational eects: nondeterminism, randomization, quantum computation,

concurrency, . . .

I Incorrectness Reasoning

I Can a single logical foundation capture it all?

I What does a Separation Logic based on this look like?

Computational Eects and Incorrectness

Nondeterministic Bugs

I Malloc is nondeterministic, it might return null.

{ok : emp}
x := malloc() #
[x] ← 1

{(ok : x ↦→ 1) ∨ (er : x = null)}

I Does this specification characterize the bug?

I No! We don’t know if the crash state is reachable

Nondeterministic Bugs

I Malloc is nondeterministic, it might return null.

{ok : emp}
x := malloc() #
[x] ← 1

{(ok : x ↦→ 1) ∨ (er : x = null)}

I Does this specification characterize the bug?

I No! We don’t know if the crash state is reachable

Incorrectness Logic

I Incorrectness Logic Semantics

� [P] C [Q] i ∀𝜏 � Q. ∃𝜎 � P . 𝜏 ∈ JCK (𝜎)

I Every state satisfying the post is reachable from some state satisfying the pre

I Does this spec characterize the bug?

[ok : emp]
x := malloc() #
[x] ← 1
[(ok : x ↦→ 1) ∨ (er : x = null)]

Incorrectness Logic

I Incorrectness Logic Semantics

� [P] C [Q] i ∀𝜏 � Q. ∃𝜎 � P . 𝜏 ∈ JCK (𝜎)

I Every state satisfying the post is reachable from some state satisfying the pre

I Does this spec characterize the bug?

[ok : emp]
x := malloc() #
[x] ← 1
[(ok : x ↦→ 1) ∨ (er : x = null)]

Dropping Disjuncts

I The following (more concise) spec is also valid

[ok : emp]
x := malloc() #
[x] ← 1
[(ok : x ↦→ 1) ∨ (er : x = null)]

=⇒

[ok : emp]
x := malloc() #
[x] ← 1
[er : x = null]

I Static analyzers do not have to traverse all program paths

Program Logics—Comparison

I Incorrectness Logic:

I Specify true bugs
I Drop program paths for eiciency

I . . . but specialized to nondeterminism

I Hoare Logic:

I Can be used for correctness

I Supports many types of eects (e.g., probabilistic programs)

I . . . but cannot identify bugs

I Can we get the best of both worlds?

Program Logics—Comparison

I Incorrectness Logic:

I Specify true bugs
I Drop program paths for eiciency

I . . . but specialized to nondeterminism

I Hoare Logic:

I Can be used for correctness

I Supports many types of eects (e.g., probabilistic programs)

I . . . but cannot identify bugs

I Can we get the best of both worlds?

Outcome Logic

I Similar to Hoare Logic, but pre/post refer to collections of states

� 〈𝜑〉 C 〈𝜓 〉 i ∀m. m � 𝜑 =⇒ JCKm � 𝜓

I What is m?

Nontermination: m ∈ State + {⊥}
Nondeterminism: m ∈ Set(State)
Randomization: m ∈ Dist(State)
Exceptions: m ∈ State + E

...

Outcome Assertions

I Syntax

𝜑 ::= > | >⊕ | 𝜑 ∨𝜓 | 𝜑 ⊕𝜓 | 𝜖 : P 𝜖 ::= ok | er
I Semantics (Nondeterministic Interpretation):

S � >⊕ i S = ∅
S � 𝜑 ⊕𝜓 i ∃S1, S2. S = S1 ∪ S2 and S1 � 𝜑 and S2 � 𝜓
S � (𝜖 : P) i S ≠ ∅ and ∀𝜎 ∈ S. 𝜎 � (𝜖 : P)

...

Specifying a Bug

I Does this spec characterize the bug?

〈ok : emp〉
x := malloc() #
[x] ← 1
〈(ok : x ↦→ 1) ⊕ (er : x = null)〉

I Yes!

Specifying a Bug

I Does this spec characterize the bug?

〈ok : emp〉
x := malloc() #
[x] ← 1
〈(ok : x ↦→ 1) ⊕ (er : x = null)〉

I Yes!

Dropping Outcomes

I We can also drop some of the program paths

〈ok : emp〉
x := malloc() #
[x] ← 1
〈(ok : x ↦→ 1) ⊕ (er : x = null)〉

=⇒

〈ok : emp〉
x := malloc() #
[x] ← 1
〈(er : x = null) ⊕ >〉

Probabilistic Outcomes

I Outcomes are more general than nondeterminism

I We can reason probabilistically about unreliable network connections

〈ok : true〉
x := ping(192.0.2.1)
〈(ok : x = 200) ⊕99% (er : x = 500)〉

The Frame Rule

The Outcome Separating Conjunction

I A new operator 𝜑 ~ F is defined inductively:

> ~ F , >
>⊕ ~ F , >⊕

(𝜑 ∨𝜓) ~ F , (𝜑 ~ F) ∨ (𝜓 ~ F)
(𝜑 ⊕𝜓) ~ F , (𝜑 ~ F) ⊕ (𝜓 ~ F)
(𝜖 : P) ~ F , 𝜖 : P ∗ F

The Outcome Logic Frame Rule

I The usual Frame Rule:

{P} C {Q} mod(C) ∩ fv(F) = ∅
{P ∗ F} C {Q ∗ F}

Frame

I What we want:

〈𝜑〉 C 〈𝜓 〉 mod(C) ∩ fv(F) = ∅
〈𝜑 ~ F〉 C 〈𝜓 ~ F〉

Frame

Memory Allocation and the Frame Rule

I Suppose allocation is deterministic:

{emp} x := alloc() {x = 1}

I The address of x is 1, since that is the first address

I Now, we use the frame rule:

{emp} x := alloc() {x = 1}
{y ↦→ 2} x := alloc() {y ↦→ 2 ∧ x = 1}

Frame

I Was this inference valid?

Memory Allocation and the Frame Rule

I Suppose allocation is deterministic:

{emp} x := alloc() {x = 1}

I The address of x is 1, since that is the first address

I Now, we use the frame rule:

{emp} x := alloc() {x = 1}
{y ↦→ 2} x := alloc() {y ↦→ 2 ∧ x = 1}

Frame

I Was this inference valid?

Nondeterminism and the Frame Rule

I Idea: make memory allocation nondeterministic

I We cannot say that x = 1, we can only say:

{emp} x := alloc() {x = 1 ∨ x = 2 ∨ . . .}

I Aer applying the frame rule, this is still true

{y ↦→ 2} x := alloc() {y ↦→ 2 ∧ (x = 1 ∨ x = 2 ∨ . . .)}

I Problem: OL supports execution models other than nondeterminism

Nondeterminism and the Frame Rule

I Idea: make memory allocation nondeterministic

I We cannot say that x = 1, we can only say:

{emp} x := alloc() {x = 1 ∨ x = 2 ∨ . . .}

I Aer applying the frame rule, this is still true

{y ↦→ 2} x := alloc() {y ↦→ 2 ∧ (x = 1 ∨ x = 2 ∨ . . .)}

I Problem: OL supports execution models other than nondeterminism

Must and May Properties

I Separation Logic only supports must properties
I Outcome Logic also supports may properties

〈ok : emp〉
x := malloc() #
[x] ← 1
〈(er : x = null) ⊕ >〉

May Properties and Memory Allocation

I Even with nondeterministic allocation, the following is valid:

〈ok : emp〉 x := alloc() 〈(ok : x = 1) ⊕ >〉

I Using the frame rule, we get something that is not true

〈ok : y ↦→ 2〉 x := alloc() 〈(ok : y ↦→ 2 ∧ x = 1) ⊕ >〉

The Solution

I To make memory allocation local, assertions cannot mention heap addresses

I Lemma: Outcome Logic assertions are invariant to heap permutations

∀𝜋. m � 𝜑 =⇒ 𝜋 (m) � 𝜑

Safe Preconditions

I Separation Logic requires preconditions to be safe
I If not, the following would be valid:

{emp} [x] ← 1 {emp}

I Now, using the frame rule, we get

{x ↦→ 2} [x] ← 1 {x ↦→ 2}

I Which is clearly false!

Safety in Outcome Logic

I Safe preconditions are undesirable in Outcome Logic

I Bugs do not require us to look at all paths

〈ok : x = null〉 ([x] ← 1) + C 〈(er : x = null) ⊕ >〉

I If the pre had to be safe, we would need to inspect C

Outcome Logic + Concurrency

Concurrent Outcomes

I Outcomes correspond to possible interleavings

〈ok : x ↦→ −〉
[x] ← 1 ‖ [x] ← 2
〈(ok : x ↦→ 1) ⊕ (ok : x ↦→ 2)〉

The Exchange Law

I From Concurrent Kleene Algebra:

(C1 ‖ C ′1) # (C2 ‖ C ′2) ≤ (C1 # C2) ‖ (C ′1 # C ′2)

I In Outcome Logic:

〈𝜑〉 (C1 ‖ C ′1) # (C2 ‖ C ′2) 〈𝜓 〉
〈𝜑〉 (C1 # C2) ‖ (C ′1 # C ′2) 〈𝜓 ⊕ >〉

Exchange

Concurrent Bugs

I The following program will crash in some interleavings

[x] ← 1 # free(x) #
[x] ← 2 skip

I The exchange law can partially sequentialize the program

.

.

.

〈ok : x ↦→ −〉 ([x] ← 1 ‖ free(x)) # ([x] ← 2 ‖ skip) 〈er : x 6↦→〉
〈ok : x ↦→ −〉 ([x] ← 1 # [x] ← 2) ‖ (free(x) # skip) 〈(er : x 6↦→) ⊕ >〉

Exchange

I Complete the proof using all the Iris machinery

Conclusion

I OL is sound for correctness and incorrectness with eects

I The OL frame rule allows eects and dropping paths

I Future work: OL + concurrency (with Iris)

I Further reading at cs.cornell.edu/~noamz
I Outcome Logic: A Unified Foundation for Correctness and Incorrectness Reasoning

[OOPSLA’23]

I Outcome Separation Logic: Local Reasoning for Correctness and Incorrectness with

Computational Eects [arXiv]

I A lot more cool stu!

I Algebraic semantics based on semirings

I Relative completeness proof

I OL subsumes Hoare Logic, probabilistic Hoare Logic, etc

I Symbolic execution using bi- and tri-abduction

	Computational Effects and Incorrectness
	The Frame Rule
	Outcome Logic + Concurrency

