Verifying Tail Modulo Cons using Relational Separation Logic

Clément Allain
Gabriel Scherer
François Pottier

INRIA Paris
June 5, 2024

Verifying Tail Modulo Cons using Relational Separation Logic

Program transformation implemented in the OCaml compiler by Frédéric Bour, Basile Clément \& Gabriel Scherer.

Verifying Tail Modulo Cons using Relational Separation Logic

Formalize the transformation and its soundness.

Verifying Tail Modulo Cons using Relational Separation Logic

Prove soundness using an adequate IRIS binary logical relation à la Simuliris.

The map problem: natural implementation

```
let rec map f xs =
    match xs with
    | [] }
        []
    | x :: xS }
        let y = f x in
        y :: map f xs
# List.init 250_000 (fun _ -> ())
    |> map Fun.id
    |> ignore
    ; ;
Stack overflow during evaluation (looping recursion?).
```


The map problem: natural implementation

The map problem: APS implementation

```
let rec map ys \(f\) xs =
    match xs with
    | [] \(\rightarrow\)
        List.rev ys
    \(\mid \mathrm{x}:\) : \(\mathrm{xs} \rightarrow\)
        let \(y=f x\) in
        map (y : : ys) f xs
let map \(x s=\)
    map [] f xs
\# List.init 250_000 (fun _ \(\rightarrow\) ())
    |> map Fun.id
    |> ignore
    ; ;
- : unit = ()
```


The map problem: APS implementation

The map problem: DPS implementation

The map problem: DPS implementation

```
let rec map_dps dst f xs = let map f xs =
    match xs with
        [] }
        set_field dst 1 []
    | x :: xs }
        let y = f x in
        let dst' = y :: [] in
        set_field dst 1 dst' ;
        map_dps dst' f xs
```

```
    match xs with
```

 match xs with
 | [] }
 | [] }
 []
 []
 | x :: xs }
 | x :: xs }
 let y = f x in
 let y = f x in
 let dst = y :: [] in
 let dst = y :: [] in
 map_dps dst f xs ;
 map_dps dst f xs ;
 dst
    ```
        dst
```

```
# List.init 250_000 (fun _ -> ())
```


List.init 250_000 (fun _ -> ())

 |> map Fun.id
 |> map Fun.id
 |> ignore
 |> ignore
 ;;
 ;;
 - : unit = ()

```
- : unit = ()
```


The map problem: TMC

```
let[@tail_mod_cons] rec map f xs =
    match xs with
    | [] }
        []
    | x :: xs }
            let y = f x in
            y :: map f xs
```

```
# List.init 250_000 (fun _ -> ())
```


List.init 250_000 (fun _ -> ())

 |> map Fun.id
 |> map Fun.id
 |> ignore
 |> ignore
 ; ;
 ; ;
 - : unit = ()

```
- : unit = ()
```


DataLang: syntax

| Index | \ni | i | ::= | $0\|1\| 2$ |
| :---: | :---: | :---: | :---: | :---: |
| Tag | \ni | t | | |
| B | \ni | b | | |
| L | \ni | ℓ | | |
| \mathbb{F} | \ni | f | | |
| \mathbb{X} | \ni | x, y | | |
| Val | \ni | v, w | :: $=$ | () $\|i\| t\|b\| \ell \mid @ f$ |
| Expr | \ni | e | $::=$ | $\begin{aligned} & v\|x\| \text { let } x=e_{1} \text { in } e_{2} \mid e_{1} \overline{e_{2}} \\ & e_{1}=e_{2} \mid \text { if } e_{0} \text { then } e_{1} \text { else } e_{2} \\ & \left\{t, e_{1}, e_{2}\right\} \\ & e_{1} \cdot\left(e_{2}\right) \mid e_{1} \cdot\left(e_{2}\right) \leftarrow e_{3} \end{aligned}$ |
| Def | \ni | d | ::= | $\operatorname{rec} \bar{x}=e$ |
| Prog | \ni | p | $:=$ | $\mathbb{F} \xrightarrow{\text { fin }}$ Def |
| State | \ni | σ | $:=$ | \underline{L} fin Val |
| Config | \ni | ρ | $:=$ | Expr \times State |

DataLang: map

map $:=$ rec f xs $=$ match xs with
| [] \rightarrow
[]
| x : : xs \rightarrow
let $y=f$ in
y : : @map f xs

TMC transformation

$$
\begin{gathered}
e_{s} \underset{\text { dir }}{\stackrel{\xi}{\xi}} e_{t} \quad d_{s} \underset{\mathrm{dir}}{\stackrel{\xi}{\rightrightarrows}} d_{t} \\
\left(e_{d s t}, e_{i d x}, e_{s}\right) \underset{\mathrm{dps}}{\stackrel{\xi}{\rightrightarrows}} e_{t} \quad d_{s} \underset{\mathrm{dps}}{\stackrel{\xi}{m}} d_{t} \\
p_{s} \rightsquigarrow p_{t}
\end{gathered}
$$

TMC transformation: map

```
map := rec f xs =
    match xs with
    | [] }
        []
    | x :: xs }
        let y = f x in
        let dst = y :: ■ in
        @map_dps dst 2 f xs ;
        dst
    map_dps := rec dst idx f xs =
    match xs with
    | [] }
        dst.(idx) \leftarrow []
    | x :: xS }
    let y = f x in
    let dst' = y :: ■ in
    dst.(idx) \leftarrow dst' ;
    @map_dps dst' 2 f xs
```


Transformation soundness

$p_{s} \rightsquigarrow p_{t} \quad$ program p_{s} transforms into program p_{t}

$$
\begin{array}{cc}
\Downarrow & \\
p_{s} \sqsupseteq p_{t} \quad & \text { program } p_{t} \text { refines program } p_{t} \\
& \text { (termination-preserving refinement) }
\end{array}
$$

Transformation soundness

$$
\begin{array}{cc}
p_{s} \rightsquigarrow p_{t} & \text { program } p_{s} \text { transforms into program } p_{t} \\
\Downarrow & \\
p_{s} \gtrsim p_{t} & \text { program } p_{t} \text { simulates program } p_{s} \\
& \begin{array}{c}
\text { (relational separation logic, SIMULIRIS) }
\end{array} \\
\Downarrow & \\
p_{s} \sqsupseteq p_{t} & \text { program } p_{t} \text { refines program } p_{t} \\
& \text { (termination-preserving refinement) }
\end{array}
$$

Specification in separation logic

$$
\frac{\frac{\{? ? ?\}}{\text { @map } v_{s} \gtrsim @ \operatorname{map} v_{t}}}{\{? ? ?\}}
$$

Direct transformation

$$
\frac{\left\{v_{s} \approx v_{t}\right\}}{\frac{@ \operatorname{map} v_{s} \gtrsim @ \operatorname{map} v_{t}}{\left\{w_{s}, w_{t} \cdot w_{s} \approx w_{t}\right\}}}
$$

RelDir (Simuliris)

$$
\begin{gathered}
f \in \operatorname{dom}\left(p_{s}\right) \\
v_{s} \approx v_{t} \\
\forall \frac{w_{s}, w_{t} \cdot w_{s} \approx w_{t} * \Phi\left(w_{s}, w_{t}\right)}{@ f v_{s} \gtrsim @ f v_{t}[\Phi]}
\end{gathered}
$$

DPS transformation

$$
\frac{\left\{v_{s} \approx v_{t} *(\ell+i) \mapsto_{t} \boldsymbol{\square}\right\}}{\frac{\text { @map } v_{s} \gtrsim \text { @map_dps } \ell i v_{t}}{\left\{w_{s},() . \exists w_{t} \cdot w_{s} \approx w_{t} *(\ell+i) \mapsto_{t} w_{t}\right\}}}
$$

RelDPS

$$
\begin{gathered}
\xi[f]=f_{d p s} \\
\overline{v_{s}} \approx \overline{v_{t}} \\
\ell \mapsto_{t} \bar{v} \\
\forall w_{s}, w_{t} \cdot w_{s} \approx w_{t} \rightarrow \ell \mapsto_{t} \overline{v^{2}}\left[i w_{t}\right] \rightarrow \Phi\left(w_{s},()\right) \\
@ f \overline{v_{s}} \gtrsim @ f_{d p s} \ell i \overline{v_{t}}[\Phi]
\end{gathered}
$$

RelProtocol

$$
\frac{\mathrm{X}\left(e_{s}, e_{t}, \Psi\right) \quad \forall e_{s}^{\prime}, e_{t}^{\prime} . \Psi\left(e_{s}^{\prime}, e_{t}^{\prime}\right) * e_{s}^{\prime} \gtrsim e_{t}^{\prime}\langle\mathrm{X}\rangle[\Phi]}{e_{s} \gtrsim e_{t}\langle\mathrm{X}\rangle[\Phi]}
$$

Proof sketch

$$
f_{s} \approx f_{t} \quad x s_{s} \approx x s_{t}
$$

$@ \operatorname{map} f_{s} x s_{s}$
\gtrsim
$@ m a p f_{t} x s_{t}$

Proof sketch

$f_{s} \approx f_{t}$

$x s_{s} \approx x s_{t}$

RelPure
$\xrightarrow{e_{s}^{\stackrel{p_{s}}{\text { pure }}} e_{s}^{\prime}} \quad e_{t} \xrightarrow[\text { pure }]{\stackrel{p_{t}}{\longrightarrow}} e_{t}^{\prime} \quad e_{s}^{\prime} \gtrsim e_{t}^{\prime}[\Phi]$
$@ m a p f_{s} x s_{s}$
$@ m a p f_{t} x s_{t}$

Proof sketch

$$
f_{s} \approx f_{t} \quad x s_{s} \approx x s_{t}
$$

Proof sketch

Proof sketch

$$
f_{s} \approx f_{t} \quad x s_{s} \approx x s_{t}
$$

\gtrsim

Proof sketch

$$
\begin{array}{ll}
f_{s} \approx f_{t} & x s_{s} \approx x s_{t} \\
x_{s} \approx x_{t} & x s_{s}^{\prime} \approx x s_{t}^{\prime}
\end{array}
$$

Proof sketch

Proof sketch

$$
\begin{array}{ll}
f_{s} \approx f_{t} & x s_{s} \approx x s_{t} \\
x_{s} \approx x_{t} & x s_{s}^{\prime} \approx x s_{t}^{\prime}
\end{array}
$$

$$
y_{s} \approx y_{t}
$$

let $\mathrm{y}=y_{t}$ in
let dst $=\mathrm{y}:$: \square in
@map_dps dst $2 f_{t} x s_{t}^{\prime}$; dst

Proof sketch

$$
\begin{array}{lll}
f_{s} \approx f_{t} & & x s_{s} \approx x s_{t} \\
x_{s} \approx x_{t} & & x s_{s}^{\prime} \approx x s_{t}^{\prime} \\
& y_{s} \approx y_{t}
\end{array}
$$

$$
y_{s}:: \text { @map } f_{s} x s_{s}^{\prime} \gtrsim \begin{aligned}
& \text { let dst }=y_{t}:: \square \text { in } \\
& \text { @map_dps dst } 2 f_{t} x s_{t}^{\prime} \\
& \text { dst }
\end{aligned}
$$

Proof sketch

$$
f_{s} \approx f_{t} \quad x s_{s} \approx x s_{t}
$$

Proof sketch

$$
\begin{array}{ll}
f_{s} \approx f_{t} & x s_{s} \approx x s_{t} \\
x_{s} \approx x_{t} & x s_{s}^{\prime} \approx x s_{t}^{\prime}
\end{array}
$$

$$
y_{s} \approx y_{t}
$$

$$
\ell_{t} \mapsto_{t}\left(\mathrm{CONS}, y_{t}, \square\right)
$$

$y_{s}:\left(@ \operatorname{map} f_{s} x s_{s}^{\prime}\right.$
let dst $=\ell_{t}$ in
\geq
@map_dps dst $2 f_{t} x s_{t}^{\prime}$; dst

Proof sketch

$$
\begin{array}{ll}
f_{s} \approx f_{t} & x s_{s} \approx x s_{t} \\
x_{s} \approx x_{t} & x s_{s}^{\prime} \approx x s_{t}^{\prime}
\end{array}
$$

RelTgtPure
$\xrightarrow[{e_{t} \xrightarrow[\text { pure }]{p_{t}} e_{t}^{\prime} \quad e_{s} \gtrsim e_{t}^{\prime}[\Phi}]]{e_{s} \gtrsim e_{t}[\Phi]}$

$$
y_{s}:: @ \operatorname{map} f_{s} x s_{s}^{\prime}
$$

$$
\gtrsim
$$

$$
\begin{aligned}
& \text { let dst }=\ell_{t} \text { in } \\
& \text { @map_dps dst } 2 f_{t} x s_{t}^{\prime} \text {; } \\
& \text { dst }
\end{aligned}
$$

Proof sketch

$$
\begin{array}{ll}
f_{s} \approx f_{t} & x s_{s} \approx x s_{t} \\
x_{s} \approx x_{t} & x s_{s}^{\prime} \approx x s_{t}^{\prime}
\end{array}
$$

$$
\begin{gathered}
y_{s} \approx y_{t} \\
\ell_{t} \mapsto_{t}\left(\mathrm{CONS}, y_{t}, \square\right)
\end{gathered}
$$

$y_{s}:{ }^{\text {: }}$ @map $f_{s} x s_{s}^{\prime}$
@map_dps $\quad \ell_{t} 2 f_{t} x s_{t}^{\prime}$;
ℓ_{t}

Proof sketch

$$
f_{s} \approx f_{t}
$$

```
xs
```


RelDPS2

$$
\begin{gathered}
\xi[f]=f_{d p s} \\
\overline{v_{s}} \approx \overline{v_{t}} \\
\ell \mapsto_{t}\left(t, v_{1}, v_{2}\right) \\
\forall w_{s}, w_{t} \cdot w_{s} \approx w_{t} * \ell \mapsto_{t}\left(t, v_{1}, w_{t}\right) * \Phi\left(w_{s},()\right) \\
\hline @ f \overline{v_{s}} \gtrsim @ f_{d p s} \ell 2 \overline{v_{t}}[\Phi]
\end{gathered}
$$

$$
y_{s}:: y s_{s}
$$

$$
\text { @map_dps } \ell_{t} 2 f_{t} x s_{t}^{\prime} \text {; }
$$

Proof sketch

$$
\begin{gathered}
f_{s} \approx f_{t} \quad x s_{s} \approx x s_{t} \\
x_{s} \approx x_{t} \quad x s_{s}^{\prime} \approx x s_{t}^{\prime} \\
y_{s} \approx y_{t} \\
y s_{s} \approx y s_{t} \\
\ell_{t} \mapsto_{t}\left(\mathrm{CONS}, y_{t}, y s_{t}\right)
\end{gathered}
$$

$y_{s}:: y s_{s}$
\geq
() $; \quad \ell_{t}$

Proof sketch

$$
y_{s}:: y s_{s} \quad \gtrsim \quad \ell_{t}
$$

$$
\begin{aligned}
& f_{s} \approx f_{t} \quad x s_{s} \approx x s_{t} \\
& x_{s} \approx x_{t} \quad x s_{s}^{\prime} \approx x s_{t}^{\prime} \\
& y_{s} \approx y_{t} \\
& y s_{s} \approx y s_{t} \\
& \ell_{t} \mapsto_{t}\left(\mathrm{CONS}, y_{t}, y s_{t}\right)
\end{aligned}
$$

Proof sketch

$$
\begin{array}{ll}
f_{s} \approx f_{t} & x s_{s} \approx x s_{t} \\
x_{s} \approx x_{t} & x s_{s}^{\prime} \approx x s_{t}^{\prime}
\end{array}
$$

RelSrcCons
 $$
\frac{\forall \ell . \ell \mapsto_{s}\left(\mathrm{CONS}, v_{1}, v_{2}\right) * \ell \gtrsim e_{t}[\Phi]}{v_{1}:: v_{2} \gtrsim e_{t}[\Phi]}
$$

\qquad

Proof sketch

$$
\begin{gathered}
f_{s} \approx f_{t} \quad \begin{array}{rl}
& x s_{s} \approx x s_{t} \\
x_{s} \approx x_{t} & x s_{s}^{\prime} \approx x s_{t}^{\prime} \\
& y_{s} \approx y_{t} \\
y s_{s} \approx y s_{t} \\
\ell_{t} \mapsto_{t}\left(\mathrm{CONS}, y_{t}, y s_{t}\right) \\
\ell_{s} \mapsto_{s}\left(\mathrm{CONS}, y_{s}, y s_{s}\right)
\end{array}
\end{gathered}
$$

ℓ_{s}

$$
\gtrsim
$$

$$
\ell_{t}
$$

Proof sketch

$$
f_{s} \approx f_{t} \quad x s_{s} \approx x s_{t}
$$

$$
\begin{gathered}
\text { RELBiJInSERT } \\
\ell_{s} \mapsto_{s} \overline{v_{s}} \\
\ell_{t} \mapsto_{t} \overline{v_{t}} \\
\overline{v_{s}} \approx \overline{v_{t}} \\
\frac{\ell_{s} \approx \ell_{t} * e_{s} \gtrsim e_{t}[\Phi]}{e_{s} \gtrsim e_{t}[\Phi]}
\end{gathered}
$$

Proof sketch

$$
\begin{array}{cc}
f_{s} \approx f_{t} & \\
x_{s} \approx x_{t} & x s_{s} \approx x s_{t} \\
y_{s} \approx y_{t} \\
y s_{s} \approx y s_{t} & \\
& \\
& \\
& \\
\ell_{s} \approx \ell_{t}^{\prime}
\end{array}
$$

ℓ_{s}
$\gtrsim \quad \ell_{t}$

Concluding remarks

- The real proof deals with the abstract relational transformation.
- Details regarding the undetermined evaluation order of constructors were eluded.
- Other program transformations verified using protocols: APS, inlining.

Thank you for your attention!

Simulation

$$
\begin{aligned}
& \lambda \text { sim. } \lambda \text { sim-inner. } \lambda\left(\Phi, e_{s}, e_{t}\right) . \forall \sigma_{s}, \sigma_{s} \cdot \mathrm{I}\left(\sigma_{s}, \sigma_{t}\right) \rightarrow * \Leftrightarrow \\
& \text { [1) } \mathrm{I}\left(\sigma_{s}, \sigma_{t}\right) * \Phi\left(e_{s}, e_{t}\right) \\
& \text { (2) } \mathrm{I}\left(\sigma_{s}, \sigma_{t}\right) * \text { strongly-stuck } p_{p_{s}}\left(e_{s}\right) * \text { strongly-stuck } p_{p_{t}}\left(e_{s}\right) \\
& \text { (3) } \exists e_{s}^{\prime}, \sigma_{s}^{\prime} \cdot\left(e_{s}, \sigma_{s}\right) \xrightarrow{p_{s}}+ \\
& \text { (4) reducible } p_{t}\left(e_{t}, \sigma_{t}\right) * \forall e_{t}^{\prime}, \sigma_{t}^{\prime} \cdot\left(e_{t}, \sigma_{t}\right) \xrightarrow{p_{t}}\left(e_{t}^{\prime}, \sigma_{t}^{\prime}\right) \rightarrow * \\
& \operatorname{sim}^{-\operatorname{body}_{\mathrm{X}}}:= \\
& \mathrm{V}\left[\begin{array}{ll}
(\mathrm{A}) & \mathrm{I}\left(\sigma_{s}, \sigma_{t}^{\prime}\right) * \operatorname{sim-inner}\left(\Phi, e_{s}, e_{t}^{\prime}\right) \\
\text { (B) } & \exists e_{s}^{\prime}, \sigma_{s}^{\prime} .\left(e_{s}, \sigma_{s}\right) \xrightarrow{p_{s}+}\left(e_{s}^{\prime}, \sigma_{s}^{\prime}\right) *
\end{array}\right. \\
& \mathrm{I}\left(\sigma_{s}^{\prime}, \sigma_{t}^{\prime}\right) * \operatorname{sim}\left(\Phi, e_{s}^{\prime}, e_{t}^{\prime}\right) \\
& \text { (5) } \exists K_{s}, e_{s}^{\prime}, K_{t}, e_{t}^{\prime}, \Psi \text {. } \\
& e_{s}=K_{s}\left[e_{s}^{\prime}\right] * e_{t}=K_{t}\left[e_{t}^{\prime}\right] * \mathrm{X}\left(\Psi, e_{s}^{\prime}, e_{t}^{\prime}\right) * \mathrm{I}\left(\sigma_{s}, \sigma_{t}\right) * \\
& \forall e_{s}^{\prime \prime}, e_{t}^{\prime \prime} \cdot \Psi\left(e_{s}^{\prime \prime}, e_{t}^{\prime \prime}\right) \rightarrow \operatorname{sim-inner}\left(\Phi, K_{s}\left[e_{s}^{\prime \prime}\right], K_{t}\left[e_{t}^{\prime \prime}\right]\right) \\
& \text { sim-inner }{ }_{\mathrm{X}}:=\lambda \text { sim. } \mu \text { sim-inner. } \operatorname{sim}-\operatorname{body}_{\mathrm{X}}(\text { sim, sim-inner }) \\
& \operatorname{sim}_{\mathrm{X}}:=\nu \text { sim. sim-inner }{ }_{\mathrm{X}}(\text { sim }) \\
& e_{s} \gtrsim e_{t}\langle\mathrm{X}\rangle[\Phi]:=\operatorname{sim}_{\mathrm{X}}\left(\Phi, e_{s}, e_{t}\right) \\
& e_{s} \gtrsim e_{t}\langle\mathrm{X}\rangle\{\Phi\}:=e_{s} \gtrsim e_{t}\langle\mathrm{X}\rangle\left[\lambda\left(e_{s}^{\prime}, e_{t}^{\prime}\right) . \exists v_{s}, v_{t} . e_{s}^{\prime}=v_{s} * e_{t}^{\prime}=v_{t} * \Phi\left(v_{s}, v_{t}\right)\right]
\end{aligned}
$$

TMC protocol

$$
\begin{aligned}
\mathrm{X}_{\operatorname{dir}}\left(\Psi, e_{s}, e_{t}\right):= & \exists f, v_{s}, v_{t} . \\
& f \in \operatorname{dom}\left(p_{s}\right) * \\
& e_{s}=@ f v_{s} * e_{t}=@ f v_{t} * v_{s} \approx v_{t} * \\
& \forall v_{s}^{\prime}, v_{t}^{\prime} \cdot v_{s}^{\prime} \approx v_{t}^{\prime} * \Psi\left(v_{s}^{\prime}, v_{t}^{\prime}\right)
\end{aligned}
$$

$\mathrm{X}_{\mathrm{DPS}}\left(\Psi, e_{s}, e_{t}\right):=\quad \exists f, f_{d p s}, v_{s}, \ell, i, v_{t}$.

$$
f \in \operatorname{dom}\left(p_{s}\right) * \xi[f]=f_{d p s} *
$$

$$
e_{s}=@ f v_{s} * e_{t}=@ f_{d p s}\left((\ell, i), v_{t}\right) * v_{s} \approx v_{t} *
$$

$$
(\ell+i) \mapsto \square_{*}
$$

$$
\forall v_{s}^{\prime}, v_{t}^{\prime} \cdot(\ell+i) \mapsto v_{t}^{\prime} * v_{s}^{\prime} \approx v_{t}^{\prime} * \Psi\left(v_{s}^{\prime},()\right)
$$

$\mathrm{X}_{\text {TMC }}:=\mathrm{X}_{\text {dir }} \sqcup \mathrm{X}_{\mathrm{DPS}}$

