Bluebell

An alliance of Relational Lifting and Independence for Probabilistic Reasoning

EMANUELE D'OSUALDO • Uni Konstanz
TIALU BAO • Cornell
AZADEH FARZAN • Uni Toronto

[DRAFT ON arXiv]
THE JOINT CONDITIONING-MODALITY
GOAL

Unify and generalize Proof principles for Unary & Relational Probabilistic Reasoning

Long Term:

Build an "Iris Core Logic" for Probabilistic Reasoning
Probabilistic Programs

We consider a simple programming language:

- Sequential & First Order
- Imperative with mutable variable store (no heap)
- Bounded Coops: everything terminates

Normal assignments $x := e$

Sampling assignments $x := \nu \mu$

\[
\textbf{Big Step Semantics}
\]

\[
\llbracket t \rrbracket : \mathbb{D}(\text{Store}) \rightarrow \mathbb{D}(\text{Store})
\]

Program term

$D(\text{Val}) = \text{Probability distribution over values}$
Probabilistic Programs

We consider a simple programming language:

- Sequential & First Order
- Imperative with mutable variable store (no heap)
- Bounded Coops: everything terminates
- Normal assignments $x := e$
- Sampling assignments $x := \nu_\text{ID}(\text{Val})$

Simple? Yes, but already hard enough to keep us busy for a while!
REASONING STYLES

UNARY

• Goal involves one program \(t \)
• Example properties:
 - Output distribution of \(x \) is \(\frac{1}{4} \)
 - Probability of \(x \geq 10 \) is \(\frac{1}{2} \)
 - Expected value of \(x \) is \(\frac{1}{3} \)
 - By the end, \(m \) and \(c \) are probabilistically independent
 - \(m \) could be a plaintext message
 - \(c \) its cyphertext

RELATIONAL

• Goal involves two programs \([t_1, t_2]\)
• Example properties:
 - \(t_1 \) and \(t_2 \) induce the same
distribution on \(x \)
 - \(t_2 \) could be an optimization of \(t_1 \)
 - \(t_1 \) could be a cryptographic protocol
 - \(t_2 \) its idealized perfect version
 - Starting from similar input,
 \(t_1 \) and \(t_2 \) will produce “similar”
distributions
 - \(t_2 \) differential privacy
// Encryption of 1 bit
\(k \approx \text{Ber}(\frac{1}{2}) \) // New random key (1 bit)
\(m \approx \text{Ber}(\rho) \) // Message to encrypt (arbitrary bias \(\rho \))
\(c := m \oplus k \) // Compute cyphertext
// Encryption of 1 bit
k \sim \text{Ber}(1/2)
m \sim \text{Ber}(\rho)
c := m \oplus k
\{ c \sim \text{Ber}(1/2) \}

Reasoning (informally)

1. K and m are independent:
 \[P(k=v, m=w) = P(k=v) \cdot P(m=w) \]

2. Conditioning on m:
 - if m=0 then c = k so c \sim \text{Ber}(1/2)
 - if m=1 then c = \overline{k} so c \sim \text{Ber}(1/2)

\[c \sim \rho \cdot \text{Ber}(1/2) + (1-\rho) \cdot \text{Ber}(1/2) \]
\[= \text{Ber}(1/2) \]
// Encryption of 1 bit

\[k \sim \text{Ber}(\frac{1}{2}) \]
\[m \sim \text{Ber}(\rho) \]
\[c := m \oplus k \]
\[
\{ c \sim \text{Ber}(\frac{1}{2}) \} \\
\wedge c \text{ and } m \text{ are independent!}
\]

Reasoning (informally)

1. \(k \) and \(m \) are independent:
 \[P(k=v, m=w) = P(k=v) \cdot P(m=w) \]
2. Conditioning on \(m \):
 - if \(m=0 \) then \(c = k \) so \(c \sim \text{Ber}(\frac{1}{2}) \)
 - if \(m=1 \) then \(c = \neg k \) so \(c \sim \text{Ber}(\frac{1}{2}) \)

\[\implies c \sim p \cdot \text{Ber}(\frac{1}{2}) + (1-p) \text{Ber}(\frac{1}{2}) \]
\[= \text{Ber}(\frac{1}{2}) \]
// Encryption of 1 bit
k \sim \text{Ber}(\frac{1}{2})
\{ k \sim \text{Ber}(\frac{1}{2}) \}
\begin{align*}
m \sim \text{Ber}(p) \\
\{ k \sim \text{Ber}(\frac{1}{2}) \} \land \{ m \sim \text{Ber}(p) \}
\end{align*}
c \coloneqq m \text{ XOR } k
\{ c \sim \text{Ber}(\frac{1}{2}) \} \land \{ m \sim \text{Ber}(p) \}

\text{Reasoning (informally)}
\begin{enumerate}
\item K and m are independent:
P(k=0, m=0) = P(k=0) \cdot P(m=0)
\item Conditioning on m:
\begin{align*}
&\text{if } m=0 \text{ then } c = k \text{ so } c \sim \text{Ber}(\frac{1}{2}) \\
&\text{if } m=1 \text{ then } c = \bar{k} \text{ so } c \sim \text{Ber}(\frac{1}{2})
\end{align*}
\Rightarrow c \sim p \cdot \text{Ber}(\frac{1}{2}) + (1-p) \cdot \text{Ber}(\frac{1}{2})
\begin{align*}
&= \text{Ber}(\frac{1}{2})
\end{align*}
\end{enumerate}

\text{IDEA (2)} : \text{Separation } = \text{Independence} \ [\text{PSL}][\text{LILAC}]
UNARY EXAMPLE

// Encryption of 1 bit
k \sim \text{Ber}(1/2)
\{ k \sim \text{Ber}(1/2) \}
\{ k \sim \text{Ber}(1/2) \} \ast m \sim \text{Ber}(p)
\{ k \sim \text{Ber}(1/2) \} \ast m \sim \text{Ber}(p)
\{ c \sim \text{Ber}(1/2) \} \ast m \sim \text{Ber}(p)
\{ c \sim \text{Ber}(1/2) \} \ast m \sim \text{Ber}(p)

Reasoning (informally)

(2) Conditioning on m:
\{ \{ k \sim \text{Ber}(1/2) \} \ast \{ c = k \text{? if } v = 0 \} \}
\uparrow
\{ c \sim \text{Ber}(p) \}
\{ c = k \} \text{ if } v = 1
\text{Deterministic value}
\text{Predicate over stores holds with probability 1}

IDEA① : Separation = Independence [P3L] [LILAC]
IDEA② : Conditioning via a modality [LILAC]
REASONING TOOLS

- UNARY TRIPLES: \{P\} \rightarrow \{Q\} Assertions over ID(Store)
- PROBABILISTIC INDEPENDENCE: Separation *
- CONDITIONING: via a modality \Box_x [\cdot]
RELATIONAL REASONING

1: $x \sim \mu$
 $d \sim \text{unif}(-1,1)$
 $y := x - d$

2: $x \sim \mu$
 $d \sim \text{unif}(-1,1)$
 $y := x + d$

GOAL: $y^{(1)}$ is distributed like $y^{(2)}$

UNARY PROOF STRATEGY: Characterize the exact distribution of y
 in the two programs, then compare.

\[\rightarrow \] Can be prohibitively hard to do!

RELATIONAL STRATEGY: Execute programs in lockstep showing that
 whatever the steps might be computing, the two sides remain the same.
RELATIONAL REASONING

1: \(x \sim \mu \)
\(d \sim \text{unif}(-1,1) \)
\(y := x - d \)

2: \(x \sim \mu \)
\(d \sim \text{unif}(-1,1) \)
\(y := x + d \)

A world of pure imagination

GOAL: \(y^{(1)} \) is distributed like \(y^{(2)} \)
RELATIONAL REASONING

1: \(x := a \)
 \(d \sim \text{unif}(-1,1) \)
 \(y := x - d \)

2: \(x := a \)
 \(d \sim \text{unif}(-1,1) \)
 \(y := x + d \)

GOAL: \(y^{(1)} \) is distributed like \(y^{(2)} \)
RELATIONAL REASONING

1: \(x := a \)

\(d := b \)

\(y := x - d \)

2: \(x := a \)

\(d := -b \)

\(y := x + d \)

Goal: \(y^{(1)} \) is distributed like \(y^{(2)} \)
RELATIONAL REASONING

1: $x \sim \mu$
 $d \sim \text{unif}(-1, 1)$
 $y := x - d$

2: $x \sim \mu$
 $d \sim \text{unif}(-1, 1)$
 $y := x + d$

$\lbrack \text{pRHL} \rbrack$

Relation over Store x Store
Holding with probability 1
in some "fictional" joint distribution
RELATIONAL REASONING

1: $x \sim \mu$

 $d \sim \text{unif}(-1, 1)$

 $y := x - d$

2: $x \sim \mu$

 $d \sim \text{unif}(-1, 1)$

 $d \leftarrow -d$

$y := x + d$

\uparrow

Relation over Store \times Store

Holding with probability 1 in some "fictional" joint distribution

$[pRHL]$ = Relational Lifting $[LR]$
RELATIONAL REASONING

1: \[x \sim \mu \]
\[d \sim \text{unif}(-1,1) \]
\[y := x - d \]

2: \[x \sim \mu \]
\[d \sim \text{unif}(-1,1) \]
\[y := x + d \]

\[[p_{\text{RHL}}] \]

Relation over Store x Store
Holding with probability 1
in some "fictional" joint distribution

= Relational lifting \[LR \]

FUNDAMENTAL THEOREM OF RELATIONAL LIFTING: (Meta)

If \[y^{(1)} = y^{(2)} \] then \[y^{(1)} \] is distributed like \[y^{(2)} \]
RELATIONAL REASONING (LIMITATIONS)

1. $x \sim \mu$
 $d \sim \text{unif}(-1, 1)$
 $y := x - d$

2. $d \sim \text{unif}(-1, 1)$
 $x \sim \mu$
 $y := x + d$

Only asserting via Relational lifting is too limiting!

Goal: Improve expressivity while retaining the relational "spirit"
REASONING TOOLS

- **UNARY TRIPLES**: \(\{ p \} \triangleright \{ q \} \)
 Assertions over D(Store)

- **PROBABILISTIC INDEPENDENCE**: Separation *

- **CONDITIONING**: via a modality \(x \mapsto v \)
REASONING TOOLS

- UNARY TRIPLES: \(\{ p \} t \{ q \} \) Assertions over ID(Store)

- PROBABILISTIC INDEPENDENCE: Separation

- CONDITIONING: via a modality \(\Box \)

- RELATIONAL TRIPLES: \([1:t_1, 2:t_2] \) \(LR_1 \) \(LR_2 \) Relations over Store

\(R_1, R_2 \subseteq \text{Store} \times \text{Store} \)
REASONING TOOLS

- **UNARY TRIPLES**: $\{ p \} \triangleleft \{ q \}$
 Assertions over $D(\text{Store})$

- **PROBABILISTIC INDEPENDENCE**: Separation *

- **CONDITIONING**: via a modality \Box_x

- **RELATIONAL TRIPLES**: $\left[R_1 \right] [1:t_1, 2:t_2] \left[R_2 \right]$
 Relations over Store
 $R_1, R_2 \subseteq \text{Store} \times \text{Store}$

- **RELATIONAL LIFTING**: $\left[L \right]$
REASONING TOOLS

- **UNARY TRIPLES**: \(\{ \mathcal{P}_i \} \triangleright \{ \mathcal{Q}_j \} \)
 Assertions over \(\mathcal{D}(\text{Store}) \)

- **PROBABILISTIC INDEPENDENCE**: Separation \(\ast \)

- **CONDITIONING**: via a modality \(\triangleright \)

- **RELATIONAL TRIPLES**: \([\mathcal{L}_1 : [1 : \mathcal{t}_1, 2 : \mathcal{t}_2] \mathcal{L}_2] \)
 Relations over \(\text{Store} \)
 \(\mathcal{R}_1, \mathcal{R}_2 \subseteq \text{Store} \times \text{Store} \)

- **RELATIONAL LIFTING**: \(\mathcal{L} \)

Can we unify and generalize?

spoiler: YES
BLUEBELL

First observation: We can harmonize all these features by:

- Using $\text{Assrt} := \text{ID}(\text{Store}) \times \text{ID}(\text{Store}) \rightarrow \text{Prop}$
 - Unary assertions just ignore one of the two distributions $\times \langle 1 \rangle \sim \text{Ber}(\frac{1}{2})$
 - Relational lifting as a construct
 \[R \subseteq \text{Store} \times \text{Store} \Rightarrow [R] : \text{ID}(\text{Store}) \times \text{ID}(\text{Store}) \rightarrow \text{Prop} \]

- Multi-ary $\text{wp from}[\text{LHC}] : \forall t \in \{Q\} \rightarrow \text{partial map Indices} \rightarrow \text{Terms}$

\[\text{wp} [1 : t_1, 2 : t_2] \{Q\} \equiv \text{wp} [1 : t_1] \{\text{wp}[2 : t_2] \{Q\}\} \]

Can have unary triples, binary triples, switch back & forth.
SMALL EXAMPLE

1: \(x \sim \mu \)
 \(d \sim \text{unif}(-1,1) \)
 \(y := x - d \)

2: \(d \sim \text{unif}(-1,1) \)
 \(x \sim \mu \)
 \(y := x + d \)
Small Example

1: \(x \sim \mu \)
 \(d \sim \text{unif}(-1,1) \)
 \(x \sim \mu \)

\[\exists x \langle 1 \rangle \sim \mu * x \langle 2 \rangle \sim \mu * a \langle 1 \rangle \sim \text{unif}(1,1) * a \langle 2 \rangle \sim \text{unif}(-1,1) \]

\[\exists y \langle 1 \rangle = x \langle 2 \rangle \wedge d \langle 1 \rangle = -d \langle 2 \rangle \]

\[y := x - d \]

\[\exists y \langle 1 \rangle = y \langle 2 \rangle \]

Questions:

1) Can entailment \(\otimes \) be proven in the logic?
2) Are there useful interactions between \(\ast \), \(\Theta \), and \(LR \)?
BLUEBELL'S KEY INSIGHT

Questions:
1) Can entailment be proven in the logic?
2) Are there useful interactions between $\$, \cdot and LR?
BLUEBELL'S KEY INSIGHT

QUESTIONS:
1) Can entailment be proven in the logic?
2) Are there useful interactions between *, I and LR?

Bluebell says YES!

UNARY CONDITIONING

RELATIONAL LIFTING

THE JOINT CONDITIONING-

MODELL AND *
BLUEBELL'S KEY INSIGHT

Questions:

1. Can entailment be proven in the logic?
2. Are there useful interactions between \star, \cdot, and LR?

Bluebell says YES!

Their definitions and laws can be derived.

Rich set of core laws

THE JOINT CONDITIONING MODALITY AND \star
RELATIONAL LIFTING AS CONDITIONING

Usual picture:
\[\text{D(Store)} \times \text{D(Store)} \xrightarrow{\text{Lift}} \text{LR} \]
\[\text{Store} \times \text{Store} \xrightarrow{\text{Lift}} \text{R} \]

Bluebell’s view:
\[\text{D(Store)} \times \text{D(Store)} \xrightarrow{\text{Conditioning}} \text{LR} \]
\[\text{Store} \times \text{Store} \xrightarrow{\text{Conditioning}} \text{R} \]

(Analog of)
\[\text{D(Store)} \xrightarrow{\text{IP}(4) = 1} \text{Store} \xrightarrow{\text{A}} \]

If you condition jointly on the two distributions, you get a pair of stores satisfying R.

So, what is “joint conditioning”?
Joint Conditioning

Def Given \(M : \mathbb{D}(A) \) and \(k : A \rightarrow \mathbb{D}(\text{Store}) \) define

\[
\text{bind}(\mu, k) := \lambda s. \sum_{a \in A} \mu(a) k(a)(s)
\]

Example \(A = \{0, 1\} \) \(\mu = \text{Ber}(\frac{1}{3}) \)

\[
\text{bind}(\mu, k) = \frac{1}{3} k(0) + \frac{2}{3} k(1)
\]

[This is actually the bind of the monad \(\mathbb{D}(\cdot) \)!

]
Joint Conditioning

Def. Given $\mu : D(A)$ and $P : A \to \text{Assrt}$

define $C_\mu v. P(v) : \text{Assrt}$ by

\[
(\mu_1, \mu_2) \vdash C_\mu v. P(v) \quad \iff \quad \exists K_1, K_2 : A \to D(\text{store}).
\]

\[
\quad \quad \quad M_1 = \text{bind}(\mu_1, K_1) \land
\]

\[
\quad \quad \quad M_2 = \text{bind}(\mu_1, K_2) \land
\]

\[
\quad \quad \quad \forall a \in \text{supp}(\mu).
\]

\[
\quad \quad \quad (k_1(a), k_2(a)) \vdash P(a)
\]
JOINT CONDITIONING

$(M_1, M_2) \models C \iff \exists K_1, K_2 : A \rightarrow D(\text{store}) .
\begin{align*}
M_1 &= \text{bind}(M_1, K_1) \\
M_2 &= \text{bind}(M_1, K_2) \\
\forall a \in \text{supp}(M) . \quad (K_1(a), K_2(a)) \models P(a)
\end{align*}
Joint Conditioning

\[(M_1, M_2) \models C \text{ if } P(v) \text{ iff } \exists K_1, K_2 : A \rightarrow D(\text{store}). \]
\[M_1 = \text{bind}(M, K_1) \land M_2 = \text{bind}(M, K_2) \land \forall a \in \text{supp}(M). \]
\[(K_1(a), K_2(a)) \models P(a) \]

Example:
\[A = \{0, 1, 2\} \quad M = \text{Ber}(\frac{1}{3}) \]

\[M_1 = \frac{1}{3} K_1(0) + \frac{2}{3} K_1(1) \]
\[M_2 = \frac{1}{3} K_2(0) + \frac{2}{3} K_2(1) \]

\[P(0) \quad P(1) \]

\[x \leftarrow \text{Ber}(\frac{1}{3}) \quad \Gamma[x] = 0 \quad \Gamma[x] = 1 \]
J
O
I
T
C
O
N
D
I
T
I
O
N
I
G

\((M_1, M_2) = C_M \triangleright P(\alpha) \iff \exists K_1, K_2 : A \rightarrow \text{D(store)}.\)

\begin{align*}
M_1 &= \text{bind}(M_1, K_1) \land \\
M_2 &= \text{bind}(M_1, K_2) \land \\
\forall \text{assmp}(\mu), \\
(K_1(\alpha), K_2(\alpha)) &\vdash P(\alpha)
\end{align*}

Example: \(A = \{0, 1, 2\}, M = \text{Ber}(\frac{1}{3})\)

\begin{align*}
M_1 &= \frac{1}{3} K_1(0) + \frac{2}{3} K_1(1) \\
M_2 &= \frac{1}{3} K_2(0) + \frac{2}{3} K_2(1)
\end{align*}

\begin{align*}
P(0) &\quad P(1)
\end{align*}

\begin{align*}
\Gamma x\triangleleft \text{Ber}(\frac{1}{3}) &\quad \Gamma x\triangleleft = 0 \quad \Gamma x\triangleleft = 1
\end{align*}

\(C_M \triangleright (\Gamma x\triangleleft = \alpha \neq P(\alpha))\)

\([C_\text{UNIT-R}] \quad X\triangleleft \sim M \quad \vdash C_M \triangleright [X\triangleleft = \alpha]\)

[This reflects the right unit law of the underlying monad!]

\([C_\text{UNIT-R}] \quad X\triangleleft \sim M \quad \vdash C_M \triangleright [X\triangleleft = \alpha]\)
Encoding Lifting as Conditioning

Unary Conditioning: \[C_x v \cdot (\exists x = v \cdot P(v)) \]

Relational Lifting:

\[\mathbf{LR}(\langle x_1 \rangle, \langle x_2 \rangle) \] :=

\[\exists f : \mathcal{D}(\text{Val} \times \text{Val}). \ C_x (v_1, v_2). \ (\exists x_1 = v_1 \land \exists x_2 = v_2 \land R(v_1, v_2)) \]

(pure)
JOINT COND. RULES

[C-UNIT-R]
\[x \langle i \rangle \sim \mu \vdash C_\mu \nu. [x \langle i \rangle = \nu] \]

[C-FRAME]
\[P \ast C_\mu \nu. Q(\nu) \vdash C_\mu \nu. (P \ast Q(\nu)) \]

[C-CONS]
\[\forall u \in supp(\mu). P(u) \vdash P'(u) \]
\[C_\mu \nu. P(\nu) \vdash C_\mu \nu. P'(\nu) \]

\[x \langle i \rangle \sim \mu \ast y \langle i \rangle \sim \mu' \ast [z = x + y] \]
\[\vdash (C_\mu \nu. [x \langle i \rangle = \nu]) \ast y \langle i \rangle \sim \mu' \ast [z = x + y] \]
\[\vdash C_\mu \nu. (x \langle i \rangle = \nu \ast y \langle i \rangle \sim \mu' \ast [z = x + y]) \]
\[\vdash C_\mu \nu. (C_{\mu_1} \nu_1. (x \langle i \rangle = \nu \ast y \langle i \rangle = \nu' \ast [z = x + y])) \]
\[\vdash C_\mu \nu. C_{\mu_1} \nu_1. [x \langle i \rangle = \nu \land y \langle i \rangle = \nu' \land z = x + y] \]
[c- Assoc]

\[C_\mu \nu \cdot C_{k(\nu)} \nu' \cdot P(\nu, \nu') \vdash C_{\text{bind}^1(\mu, k)} \cdot P(\nu, \nu') \]

\[\text{bind}^1(\mu, k) = \text{do } \nu \leftarrow \mu \; \text{j} \; \nu' \leftarrow k(\nu) \; \text{j} \; \text{return } (\nu, \nu') \]

[c- unassoc]

\[C_{\text{bind}(\mu, k)} \nu' P(\nu') \vdash C_\mu \nu \cdot C_{k(\nu)} \nu' P(\nu') \]
Some Derivable Rules

\(C_n \models [R] \vdash [LR] \quad \text{(Convexity of Rel Liftings)} \)

\[[R_1] \ast [R_2] \vdash [R_1 \land R_2] \]

Note:
\[[R_1] \land [R_2] \not\vdash [R_1 \land R_2] \]
CHALLENGES

- Generalization to Iris-style user-defined ghost resources
- \([c-\text{wp}\text{-swap}]\)

\[
\text{ownVars} \land C_{\mu.\nu}. \text{wp t } \{ Q(u) \} \vdash \text{wp t } \{ C_{\mu.\nu}. Q(u) \}
\]

\[\uparrow\]
Bluebell needs this for soundness

OPEN QUESTION: Can we find a model that validates the rule without ownVars?
Thanks