
Mechanizing State Seperation for Modular Cryptographic Proofs

Markus Krabbe Larsen (krml@itu.dk)

IT University of Copenhagen

Iris Workshop 2024

June 5, 2024

IT University of Copenhagen

Security statements

Security statements about cryptographic protocols are often expressed through a pair of
modules (also called games).

+-----------+ +---------------+

Scenario 1 | Adversary | --> | Real protocol |

+-----------+ +---------------+

- -

+-----------+ +----------------+

Scenario 2 | Adversary | --> | Ideal protocol |

+-----------+ +----------------+

With what probability can an adversary distinguish if it is in scn. 1 or scn. 2?
We prove security by proving a bound on the distinguishability for all adversaries.

IT University of Copenhagen 2 / 18

The problem with lack of separation

Before separation:

For all adversaries, when the adversary
and the real protocol use disjoint sets of
names and the and the ideal protocol use
disjoint sets of names, then the
probability to distinguish the real and
ideal protocol is less than ε.

After separation:

For all adversaries, when the adversary
and the real protocol use disjoint sets of
names and the and the ideal protocol use
disjoint sets of names, then the
probability to distinguish real and ideal
protoocl is less than ε.

Let us have a closer look by modelling the primitives.1

1
As in ”State Separation for Code-Based Game-Playing Proofs“ by Brzuka, Delignat-Lavaud, Fournet, Kohbrok and Kohlweiss

IT University of Copenhagen 3 / 18

What are modules made of?

We consider the following impure actions:

sample

get

put

call

Example (One-time pad): For some
alphabet-size k ,

fn init(m : Fin k) -> ():

s <- sample {0,..,k-1}

put secret s

fn encrypt(m : Fin k) -> Fin k:

s <- get secret

return (s + m)

IT University of Copenhagen 4 / 18

Modules
Functions may be put together as modules.

Module: OTP (One-time pad)

State: secret

fn init(m : Fin k):

s <- sample {0,..,k-1}

put secret s

fn encrypt(m : Fin k):

s <- get secret

return (s + m)

We write Σ(M) for the finite set of state variables of a module M.
Example: Σ(OTP) = {secret}.
State variables are supposed to be “module-scoped”.

IT University of Copenhagen 5 / 18

A pair of modules

These modules express the property of One-Time Secrecy.

Module: OTS Real

State: secret

fn query(m : Fin k):

call init ()

c <- call encrypt m

return c

Module: OTS Ideal

State:

fn query(m : Fin k):

c <- sample {0,..,k-1}

return c

Notice that the interfaces are the same and that OTS Real expectes to call functions
named init and encrypt.

IT University of Copenhagen 6 / 18

Module composition
Modules are composed by replacing function calls with their definition. Thus we must
consider overlapping state variable names.

OTSreal ◦ OTP

+----------+ init : () -> Fin k +-----+

| |--------------------------->| |

| | | |

| OTS Real | encrypt : Fin k -> Fin k | OTP |

| |--------------------------->| |

+----------+ +-----+

In theory this is solved by “injectively renaming state variables”, but this is not sufficient to
base a machanization upon.
Currently, in SSProve state is shared.

IT University of Copenhagen 7 / 18

Advantage

An adversary is a module that defines a function run : () → bool.
For modules M,M ′ and a specific adversary A we define

α(M,M ′)(A) := | Prrun(A ◦M ⇒ true) − Prrun(A ◦M ′ ⇒ true) |

Usually we want to consider all adversaries. For example:

∀A, Σ(A) ∩ Σ(OTP) = ∅ → α(OTSReal ◦OTP,OTSIdeal)(A) ≤ 0

IT University of Copenhagen 8 / 18

Indistinguishability
For modules M and M’ define the notation

M ≈0 M
′ := ∀A,Σ(A) ∩ Σ(M) = ∅ → Σ(A) ∩ Σ(M ′) = ∅ → α(M,M ′)(A) = 0

If we can prove the following probabilistic relational hoare quadruple (in SSProve)

{λh h′, h = h′}
(OTSReal ◦OTP) query ()

≈
(OTSIdeal) query ()

{λ(h, a) (h′, a′), h = h′ ∧ a = a′}

we obtain
OTSReal ◦OTP ≈0 OTSIdeal

But what if we want to use the theorem?

IT University of Copenhagen 9 / 18

Nominals

We let name permutations act on values of different types e.g code and modules.

{secret 7→ foo; foo 7→ secret} · (put secret x) = (put foo x)

Some operators are equivariant e.g. for any permutation π and modules M and M ′,

π · (M ◦M ′) = (π ·M) ◦ (π ·M ′).

Nominals also gives us a natural notion of α-equivalence

M ≡ M ′ := ∃π, π ·M = M ′

Notice, that module composition is not a congruence under α-equivalence.

IT University of Copenhagen 10 / 18

Finding fresh names

The support of a value is the set of names that it “contains”. For modules, the support is
given by Σ.

If we are guaranteed an unlimited source of fresh names we can for x : X and y : Y define a
permutation fresh x y such that

supp x ∩ supp (fresh x y · y) = ∅

IT University of Copenhagen 11 / 18

Separated composition

Use fresh to ensure separation of modules

M ⊛M ′ := M ◦ (fresh M M ′ ·M ′)

Equalities are preserved, however under alpha equivalence

M ⊛ (M ′ ⊛M ′′) ≡ (M ⊛M ′)⊛M ′′

Importantly, separated composition is a congruence w.r.t alpha equivalence

M ≡ M ′ ⇒ N ≡ N ′ ⇒ M ⊛ N ≡ M ′ ⊛ N ′

IT University of Copenhagen 12 / 18

Compatability

For any module M and permutaiton π,

M ≈0 π ·M

For any modules M and M ′,
M ≡ M ′ → M ≈0 M

′

For any modules M and M ′,

Σ(M) ∩ Σ(M ′) = ∅ → M ◦M ′ ≡ M ⊛M ′

IT University of Copenhagen 13 / 18

Separated advantage

Advantage can now be defined in terms of separated composition

α∗(M,M ′)(A) :=| Prrun(A⊛M ⇒ true)− Prrun(A⊛M ′ ⇒ true) |

which gives name-agnostic theorems

M ≈0 M
′ ⇒ ∀A, α∗(M,M ′)(A) = 0

while renaming does not affect the actual advantage

M ≡ M ′ ⇒ N ≡ N ′ ⇒ A ≡ A′ ⇒ α∗(M,N)(A) = α∗(M ′,N ′)(A′)

IT University of Copenhagen 14 / 18

An abstract example
We show the security of some protocol Crypt.
Assume that we have previously shown, that

CryptReal ≈0 Red⊛ Foo, CryptIdeal ≈0 Red⊛ Bar, ∀A, α∗(Foo,Bar)(A) ≤ 3
7

Let A be an arbitrary adversary, then

α∗(CryptReal,CryptIdeal)(A)

≤ α∗(CryptReal,Red⊛ Foo)(A) + α∗(Red⊛ Foo,CryptIdeal)(A)

≤ 0 + α∗(Red⊛ Foo,CryptIdeal)(A)

≤ α∗(Red⊛ Foo,Red⊛ Bar)(A) + α∗(Red⊛ Bar,CryptIdeal)(A)

≤ α∗(Red⊛ Foo,Red⊛ Bar)(A) + 0

≤ α∗(Foo,Bar)(A⊛ Red)

≤ 3
7

IT University of Copenhagen 15 / 18

Case study: KEM-DEM

Using the KEM-DEM paradigm we can obtain general results about our hybrid encryption
scheme.

IT University of Copenhagen 16 / 18

Case study: Zero Knowledge OR-proof (Work in progress)
The property of Special Honest Verifier Zerk Knowledge is expressed through the two
modules Real and Ideal.
For OR-proofs we want to show that when

∀A, α∗(Real(P), Ideal(P))(A) ≤ ε1

∀A, α∗(Real(Q), Ideal(Q))(A) ≤ ε2

then
∀A, α∗(Real(OR P Q), Ideal(OR P Q))(A) ≤ ε1 + ε2

part of which follows by from the fact that there is a module Call such that

Real(OR P Q) ≈0 Call⊛ ((PatchL ⊛ Real(P)) ‡ (PatchR ⊛ Real(Q)))

Incidentally, this argument also marks the place where I entered the rabbit hole of dealing
with names.

IT University of Copenhagen 17 / 18

Thanks!

IT University of Copenhagen 18 / 18

	Introduction

