Iris-MSWasm: elucidating and mechanising the
security invariants of Memory-Safe WebAssembly

Maxime Legoupil

Aarhus Universitet

June 3, 2024

WebAssembly

» Widely used in industry
» Full formal specification
» Code organised in modules

» Users care about encapsulation

How can we show formally the encapsulation guarantees between
modules?

Rossberg et al. 2018, Bringing the web up to speed with WebAssembly

WebAssembly

» Widely used in industry
» Full formal specification
» Code organised in modules

» Users care about encapsulation

How can we show formally the encapsulation guarantees between
modules? lris-Wasm

Rossberg et al. 2018, Bringing the web up to speed with WebAssembly

Stack Module

> . defines library functions
‘Stack module > imports functions from .
Client module » Some form of memory sharing required

» Encapsulation crucial: should not
get to mess up the stacks allocated!

Can we give specifications to these modules that ensure
encapsulation?

Rao, Georges, Legoupil, Watt, Pichon-Pharabod, Gardner, Birkedal. 2023,
Iris-Wasm: Robust and Modular Verification of WebAssembly Programs

Stack Module

Specification for [8l:

There exists a predicate isStack, such that:

{} [call $new_stack] {v,isStack(v,[])}
{isStack(vp, x :: s)} [vo; call $pop] {v,v = x x isStack(wvp, s)}
{isStack(vp, s)} [x; vo; call $push] {_ isStack(vp, x :: s)}

Rao, Georges, Legoupil, Watt, Pichon-Pharabod, Gardner, Birkedal. 2023,
Iris-Wasm: Robust and Modular Verification of WebAssembly Programs

Stack Module

» We have a specification for .

n - » We can write a specification for | C
Client module P

» Those can be combined modularly

What if we don't trust the clients?

Rao, Georges, Legoupil, Watt, Pichon-Pharabod, Gardner, Birkedal. 2023,
Iris-Wasm: Robust and Modular Verification of WebAssembly Programs

Stack Module

» We have a specification for .

n - » We can write a specification for | C
Client module P

» Those can be combined modularly

What if we don't trust the clients? Use robust safety

Rao, Georges, Legoupil, Watt, Pichon-Pharabod, Gardner, Birkedal. 2023,
Iris-Wasm: Robust and Modular Verification of WebAssembly Programs

Robust Safety

» Reason about unknown, untrusted code
» Specifying a module with library calls
» Establishing invariants for a library

Rao, Georges, Legoupil, Watt, Pichon-Pharabod, Gardner, Birkedal. 2023,
Iris-Wasm: Robust and Modular Verification of WebAssembly Programs

Robust Safety

» Reason about unknown, untrusted code
» Specifying a module with library calls
» Establishing invariants for a library

» We can still prove some invariants

’Unknown module‘ » Memory layout cannot be changed

» Malicious client can still push and pop

Rao, Georges, Legoupil, Watt, Pichon-Pharabod, Gardner, Birkedal. 2023,
Iris-Wasm: Robust and Modular Verification of WebAssembly Programs

Coarse-grained safety

At worst, a buggy or exploited WebAssembly program
can make a mess of the data in its own memory

Rossberg et al. 2018, Bringing the web up to speed with
WebAssembly

Coarse-grained safety

At worst, a buggy or exploited WebAssembly program
can make a mess of the data in its own memory

Rossberg et al. 2018, Bringing the web up to speed with

WebAssembly

What is a useful module’s own memory?
E.g. compilers reeimplement a call stack in memory!

Lehmann et al. 2020, Everything Old is New Again: Binary Security of
WebAssembly

Obtaining finer-grained safety

(LTI I T I
/l\

Using a pointer

[T I [[[[[[[[[T]]
/l\

Using a capability

At g/17

MSWasm

(handles) h

<

offset

—
LI I [[[[[[[[[]]
/]\
base T

addr = base + offset

{base, offset, bound, valid, id}
bound

Unsafe Code

Michael et al. 2023, MSWasm: Soundly Enforcing Memory-Safe Execution of

Reading with a handle

(handles) h == {base, offset, bound, valid, id}

h.offset < h.bound h.valid = true isAllocated(h.id)
S.seg[h.base + h.offset] = ¢

[h; t.segload] — [c]

Note: h.offset > 0 is guaranteed by invariant

Michael et al. 2023, MSWasm: Soundly Enforcing Memory-Safe Execution of
Unsafe Code

Weaknesses of the original proposal

» Pen-and-paper
» Missing some technical details

» Definition of memory safety is unintuitive and difficult to
use in practice

How can we make the MSWasm proposal more precise and useful?

Michael et al. 2023, MSWasm: Soundly Enforcing Memory-Safe Execution of
Unsafe Code

Weaknesses of the original proposal

» Pen-and-paper
» Missing some technical details

» Definition of memory safety is unintuitive and difficult to
use in practice

How can we make the MSWasm proposal more precise and useful?
Iris-MSWasm

Michael et al. 2023, MSWasm: Soundly Enforcing Memory-Safe Execution of
Unsafe Code

A minimalist example

Allocate two handles h and H

Write 42 to h

Call an adversary function [handle] — [] with arg H’
Read from h

Set global variable g to the read value

Free h

Robust Safety by Logical Relation

We define I E prog : t; — t» meaning “prog is safe to execute”

Goal: fundamental theorem
l-prog:ty > to —x T Eprog:ty > b

FEprog:tp — tp =Vv,v € V[t1]] —* wp v + prog {w,w € V[t2]}

V[t] = {values of type t that are safe to use}

Robust Safety by Logical Relation

We define I F prog : t; — t, meaning “prog is safe to execute”

Goal: fundamental theorem
l-prog:ty > to —« T Eprog:t; > b

FEprog:ti — tp =Vv,v € V[t1]] —* wpv +H prog {w,w € V[t2]}

VolInt] £ all integers
Vo[handle] = {h such that —h.valid, or
we own —¥5, . bs and
any handle stored there is in Vy[handle]}

V[t] £ {trap}U)o[t]

Robust example

Allocate two handles h and H

Write 42 to h

Call an adversary function [handle] — [] with arg H’
Read from h

Set global variable g to the read value

Free h

Robust example

Allocate two handles h and K

wp-segalloc_simplified

Robust example

Allocate two handles h and A

Write 42 to h

wp-_segstore_failure_simplified

—h.valid

wp [h; vo; t.segstore] {w, w = trap}

Robust example

Allocate two handles h and A

Write 42 to h

wp-segstore_simplified
t # handle x —¥5 | ce i hoffset — * dynamic checks

wp [h; vo; t.segstore] {FY55p oceh offset V0

Robust example

Allocate two handles h and A
Write 42 to h

Call an adversary function [handle] — [|] with arg A

Robust example

Allocate two handles h and H

Write 42 to h

Call an adversary function [handle] — [| with arg A

Robust example

Allocate two handles h and A

Write 42 to h

Call an adversary function [handle] — [|] with arg K

Robust example

Allocate two handles h and A

Write 42 to h

Call an adversary function [handle] — [|] with arg A

Read from h
Set global variable g to the read value
Free h

Robust example

Allocate two handles h and A

Write 42 to h

Call an adversary function [handle] — [|] with arg K

Read from h
Set global variable g to the read value
Free h

Scaling up: stack module

Client module

> . defines library functions

> imports functions from |8l

» Use segment memory to store stacks

» Showcase Iris-MSWasm on a larger example

» Contrast with linear memory stack module

Stack module: Iris-Wasm vs Iris-MSWasm

In Iris-Wasm:

Instantiate $stackmodule

$Mymodule: No imports

Export stack functions
Create a stack s Instantiate $advmodule
Push 42 and 10 onto s No imports
Map $advf onto s Export $advf
Set x := length(s) Instantiate $Mymodule
Assert x =2 Import stack functions

Import $advf
No exports

Stack module: Iris-Wasm vs Iris-MSWasm

In Iris-MSWasm:

Instantiate $stackmodule
$Mymodule: No imports

Export stack functions

Create a stack s Instantiate $advmodule
Push 42 and 10 onto s Import stack functions
Map $advf onto s Export $advf
Set x := length(s) Instantiate $Mymodule
Assert x =2 Import stack functions

Import $advf
No exports

Conclusion

WebAssembly is perfect for Iris
» Formally defined

» Industrial scale

Iris is perfect for WebAssembly
» Showcase strengths

» lron out extension proposals

Should all extensions of WebAssembly come with an attached
mechanised program logic?

