
CN: Verifying Systems C Code
with Separation‑Logic Refinement Types

Christopher Pulte Dhruv C. Makwana Thomas Sewell Kayvan Memarian Peter Sewell
Neel Krishnaswami

University of Cambridge

3 June 2024

Why verify systems software?

Systems software: OSs, hypervisors, firmware.

Difficult to get right . . .

. . . but crucial for correctness and security of the whole system.

Introduction 2 / 40

Systems software verification

Much progress in verification of low‑level code,
verification successes like seL4 and CertiKOS

But:

Verified
software

Convential
software

• often designed for verification
• idealised semantics
• verification andmaintenance very costly

Introduction 3 / 40

Systems software verification

Much progress in verification of low‑level code,
verification successes like seL4 and CertiKOS

But:

Verified
software

Convential
software

• often designed for verification
• idealised semantics
• verification andmaintenance very costly

Introduction 3 / 40

CN

Goals:
• realistic language semantics
• target production systems code
• try to reduce cost of verification

Introduction 4 / 40

pKVM

• Google hypervisor for Android,
• provides isolation between untrusted Linux OS and guest VMs accessing confidential data,
• written in C and ARM assembly,
• in Android since version 13.

Introduction 5 / 40

pKVM verification

pKVMwill be deployed on all Android phones
and it’s important for Android security.

verification project to prove pKVM provides isolation (Cambridge, MPI‑SWS, Radboud, SNU, Aarhus)

Introduction 6 / 40

pKVM verification

(overly?) ambitious plan:
1. verify pKVM C code with CN,

2. Google developers maintain the proof, with limited involvement of verification experts

Introduction 7 / 40

pKVM verification

(overly?) ambitious plan:
1. verify pKVM C code with CN,
2. Google developers maintain the proof, with limited involvement of verification experts

Introduction 7 / 40

Challenges

Production systems software
pKVM is written by conventional software
development team, not specifically to make
verification easy, in C.

1. handle complex semantics of C
2. handle difficult low‑level idioms (e.g.

pointer arithmetic, aliasing data structures),
complex invariants

Verification usability
Need large degree of proof automation, but fully
automatic verifiers can behave unpredictably for
undecidable problems (e.g. spinning forever).

3. predictable automation

Introduction 8 / 40

C semantics

Type system design

Validation

Current work & open problems

C is complicated

• undefined behaviours
• implementation‑defined behaviours
• unspecified values
• implicit type coercions
• mutable local variables that can be addressed
• complex control flow and variable scoping
• (WIP) subtle memory object model
• (todo) under‑specified sequencing of memory accesses

Tedious and error‑prone to handle directly.

C semantics 10 / 40

Cerberus [Memarian et al.]

• well‑validated C semantics
• elaborates C into functional(ish) language Core

C semantics 11 / 40

���� signed int increment(signed int i) {
i = i + 1;
return i;

}

����

=
proc increment (i: integer): integer :=

body =
let i_l: pointer = create(4, 'signed int') in
store('signed int', i_l, i);
let v1: integer = load('signed int', i_l) in
let sv: integer =

let n: integer = conv_int('signed int', v1) + 1 in
assert_undef(-2147483648 <= n /\ n <= 2147483647, <<UB036>>);
n in

store('signed int', i_l, conv_int('signed int', sv));
let v2: integer = load('signed int', i_l) in
kill('signed int', i_l);
run ret1 (conv_int('signed int', v2))
undef(<<UB088_reached_end_of_function>>))

return label ret1

• explicit management of stack
variables

• mathematical integers
• explicit UB checks
7 omitted: weak sequencing,

specified/unspecified

C semantics 12 / 40

���� signed int increment(signed int i) {
i = i + 1;
return i;

}

����
=
proc increment (i: integer): integer :=

body =
let i_l: pointer = create(4, 'signed int') in
store('signed int', i_l, i);
let v1: integer = load('signed int', i_l) in
let sv: integer =
let n: integer = conv_int('signed int', v1) + 1 in
assert_undef(-2147483648 <= n /\ n <= 2147483647, <<UB036>>);
n in

store('signed int', i_l, conv_int('signed int', sv));
let v2: integer = load('signed int', i_l) in
kill('signed int', i_l);
run ret1 (conv_int('signed int', v2))
undef(<<UB088_reached_end_of_function>>))

return label ret1

• explicit management of stack
variables

• mathematical integers
• explicit UB checks
7 omitted: weak sequencing,

specified/unspecified

C semantics 12 / 40

CN architecture

Instead of verifying the C code directly
we verify its Core semantics.

Compositional elaboration means CN
instrumentation of C source can be
mapped to Core instrumentation.

C program, specifications, auxiliary definitions

Core program

Core program

CN (OCaml)
incl. ownership reasoning

Z3

constraints

OK/counter model

success/counterexample

Cerberus translation

Core simplifications

C semantics 13 / 40

C semantics

Type system design

Validation

Current work & open problems

Overview

• handle difficult low‑level idioms and invariants of real‑world systems software
• provide predictable proof automation

simple first‑order language of types
• refinement types by quantifier‑free, decidable SMT solving
• linear resource types from separation logic
• . . . suitably restricted for predictable type checking

Type system design 15 / 40

1. Liquid types

signed int increment(signed int i)
{
i = i + 1;
return i;

}

Type system design 16 / 40

1. Liquid types

signed int increment(signed int i)
{
i = i + 1;
return i;

}

Type system design 16 / 40

1. Liquid types

signed int increment(signed int i)
/*@ requires i < 2147483647i32;

ensures return == i + 1i32; @*/
{
i = i + 1;
return i;

}

Πi : i32.

(i< 2147483647)⇒
Σreturn : i32.

(return= i+1)∧
I

Standard liquid types [Rondon, Kawaguchi, Jhala]
• type‑checking effectively by forward symbolic simulation,
• along each path, verify absence of UB and user‑specified conditions . . .

• . . . by decidable, quantifier‑free SMT solving

Type system design 17 / 40

2. Resource types

CN has linear resource types from separation logic:
• built‑in points‑to type: for each C‑type τ

• Owned〈τ〉
• Block〈τ〉 (for uninitialised memory + padding bytes)

• user‑defined predicates

void zero(int *p)
/*@ requires take v = Owned<int>(p);

ensures take w = Owned<int>(p); @*/
{
*p = 0;

}

Type system design 18 / 40

2. Resource types

Needmore flexible types than Rust ownership types, e.g.: pointer aliasing, pointer arithmetic.

void zero_alias (int *p)
/*@ requires take v = Owned<int>(p);

ensures take w = Owned<int>(p); @*/
{
int *q = p;
*q = 0; // ok
*p = 0; // still ok

}

First class resource types: resources are types in
their own right, de‑coupled from pointer types,
inspired by L3 [Ahmed, Fluet, Morrisett].

Owned and Block are inferred, other resources
require somemanual effort.

Type system design 19 / 40

3. Quantifiers

We need to abstract over “values” of resources, but we have to guarantee reliable inference.

∃x.(p 7→ x)∗ . . .

∃q,x.(q 7→ x)∗ . . .

Partition resource arguments into input and output arguments.

p 7→ x
input outputdetermines

Type system design 20 / 40

3. Quantifiers

We need to abstract over “values” of resources, but we have to guarantee reliable inference.

∃x.(p 7→ x)∗ . . . ok: can be inferred
∃q,x.(q 7→ x)∗ . . . bad: imprecise, inference requires backtracking

Partition resource arguments into input and output arguments.

p 7→ x
input outputdetermines

Type system design 20 / 40

3. Quantifiers

We need to abstract over “values” of resources, but we have to guarantee reliable inference.

∃x.(p 7→ x)∗ . . . ok: can be inferred
∃q,x.(q 7→ x)∗ . . . bad: imprecise, inference requires backtracking

Partition resource arguments into input and output arguments.

p 7→ x
input outputdetermines

Type system design 20 / 40

3. Quantifiers

Old: using resource inputs/outputs in inference.
New: To guarantee quantifier inference CN restricts expressible specifications quantify only

over outputs.

separation logic CN
∃x.(p 7→ x)∗ . . . CN: take x = Owned<τ>(p); . . .

∃q,x.(q 7→ x)∗ . . . CN: cannot be expressed

Take‑bindings enforce mode‑correctness syntactically, via variable scoping.

Type system design 21 / 40

3. Quantifiers – example

void increment_mem(int *p)
/*@ requires take v = Owned<int>(p);

v < 2147483647i32;
ensures take w = Owned<int>(p);

w == v + 1i32; @*/
{
*p = *p + 1;

}

Type system design 22 / 40

3. Quantifiers – predicate definitions
struct node { int x; struct node *next; };

IntList(p,xs) =
(p = NULL ∧

xs = nil)
∨
(∃hd,q, tl.
(p 7→ (hd,q) ∗
IntList(q, tl)) ∧

xs = cons(hd, tl)
)

predicate integer_list IntList (pointer p) {
if (p == NULL) {

return (Nil {});
}
else {

take node = Owned<struct node>(p);
take tl = IntList(node.next);
return (Cons {hd: node.x, tl: tl});

}
}

Predicate definitions look like function definitions:
• resource predicates claim ownership and return resource outputs
• if‑then‑else instead of disjunction to avoid backtracking

Type system design 23 / 40

3. Quantifiers – predicate definitions
struct node { int x; struct node *next; };

IntList(p,xs) =
(p = NULL ∧

xs = nil)
∨
(∃hd,q, tl.
(p 7→ (hd,q) ∗
IntList(q, tl)) ∧

xs = cons(hd, tl)
)

predicate integer_list IntList (pointer p) {
if (p == NULL) {

return (Nil {});
}
else {

take node = Owned<struct node>(p);
take tl = IntList(node.next);
return (Cons {hd: node.x, tl: tl});

}
}

Predicate definitions look like function definitions:
• resource predicates claim ownership and return resource outputs
• if‑then‑else instead of disjunction to avoid backtracking

Type system design 23 / 40

Grammar of types

bt ∈BaseType ::= uw | iw | pointer | struct tag | . . . w ∈N

rt ∈ReturnTypes ::= Σx : bt.rt
| take x= P(e1, . . . ,en)∗ rt
| take x= (∗i.GP(e∗ i+k,e2, . . .en))∗ rt
| lc∧ rt
| I

ft ∈ FunctionTypes ::= Πx : bt. ft
| take x= P(e1, . . . ,en)−∗ ft
| take x= (∗i.GP(e∗ i+k,e2, . . .en))−∗ ft
| lc⇒ ft
| rt

Type system design 24 / 40

4. Constraint types

Limiting reasoning to decidable quantifier‑free logic would be too restrictive.

CN lets users write recursive specification functions, all‑quantified assertions.
• These are not handled by SMT automation, but require manual unfolding/instantiating
• . . . or lemmas, exported to Coq Rocq.

Type system design 25 / 40

C semantics

Type system design

Validation

Current work & open problems

Formalisation: soundness of type checking

Kernel language: A‑normalised Core with explicit resource terms,
with bidirectional type system setup.

Theorem: soundness of type checking (not inference).

Validation 27 / 40

Case studies

pKVM buddy allocator: internally used by pKVM for managing page‑table memory.
• (non‑linear) pointer arithmetic,
• complex invariants,
• aliasing datastructure

part of pKVM pagetable code
• bit manipulation of pointers
• recursive pagetable ownership
• function pointers

Validation 28 / 40

Buddy allocator

The vmemmap array holds meta‑data about allocator pages.
struct list_head {

struct list_head *next, *prev;
};

struct hyp_page {
unsigned int refcount; /* 0 when free */
unsigned int order; /* pages can be merged into pages of */

/* higher order */
struct hyp_pool *pool; /* (ignore) */
struct list_head node; /* prev, next linked list pointers to */

/* free pages of same order */
};

Validation 29 / 40

Buddy allocator verification challenges

refcount order pool node
. . .

. . .
• •

. . .

. . .

(&vmemmap[phys >> PAGE_SHIFT])

Two kinds of accesses to the vmemmap:
• linked‑list prev/next pointers
• cell index computed from physical address

The safety of both kinds of accesses has to be justified.

take V = each (u64 i; start <= i && i < end)
{ Owned(array_shift(vmemmap,i)) };

each (u64 i; start <= i && i < end)
{ “V.value[i].node.prev and

V.value[i].node.next are pointers into
the vmemmap” }

Validation 30 / 40

Buddy allocator verification challenges

refcount order pool node
. . .

. . .
• •

. . .

. . .

(&vmemmap[phys >> PAGE_SHIFT])

Two kinds of accesses to the vmemmap:
• linked‑list prev/next pointers
• cell index computed from physical address

The safety of both kinds of accesses has to be justified.

take V = each (u64 i; start <= i && i < end)
{ Owned(array_shift(vmemmap,i)) };

each (u64 i; start <= i && i < end)
{ “V.value[i].node.prev and

V.value[i].node.next are pointers into
the vmemmap” }

Validation 30 / 40

Verification

Code verified mostly unchanged.

C source 364 LoC
generated Core 6169 LoC
CN specs 417 LoC
CN instrumentation 78 LoC
CN aux. definitions 249 LoC
CN lemma statements 165 LoC
Coq lemmas 1219 LoC

Verification overhead 5.85x

Type checking takes 155s

Validation 31 / 40

C semantics

Type system design

Validation

Current work & open problems

Current work & open problems

Original list of challenges:
1. complex semantics of C
2. difficult low‑level idioms, invariants
3. predictable automation

Current work & open problems 33 / 40

Current work & open problems

Original list of challenges:
1. complex semantics of C
2. difficult low‑level idioms, invariants
3. predictable automation

Handling C semantics using Cerberus works well.

Elaboration does not handle memory object model.
DhruvMakwana extending CNwith (variant of) VIPmemory
object model.

Current work & open problems 33 / 40

Current work & open problems

Original list of challenges:
1. complex semantics of C
2. difficult low‑level idioms, invariants
3. predictable automation

Too early to tell.

• promising pKVM allocator and pagetable case studies
. . . but those are the only two bigger examples

• CN will need some extensions:
• converting between Owned and byte‑representation,
• concurrency, including simple relaxed concurrency
• specification language (e.g. polymorphism)

Current work & open problems 33 / 40

Current work & open problems

Original list of challenges:
1. complex semantics of C
2. difficult low‑level idioms, invariants
3. predictable automation

• New resource inference for predictable, reasonably
automatic ownership reasoning: eager unfolding, lazy
folding of predicates [inspired by Vazou et al. 2018∗]

• Lots of automation for free from SMT solver
. . . currently not always predictable

∗Refinement Reflection: Complete Verification with SMT

Current work & open problems 33 / 40

Making verification actually usable
. . . needs not just predictable proof automation.

DARPA‑funded project VERSE (Galois, UPenn, Cambridge, . . .) to make CN verification usable by
non‑experts (proof, testing, usability studies, etc.)

Onemain difficulty: diagnosing and repairing verification failure.

Current work & open problems 34 / 40

Diagnosing verification failure

struct node { int head; struct node* tail; };

struct node *reverse(struct node *xs)
{

struct node *last = NULL;
struct node *cur = xs;
while(1)
{

if (cur == NULL) {
return last;

}
struct node *tmp = cur->tail;
cur->tail = last;
last = cur;
cur = tmp;

}
}

Current work & open problems 35 / 40

Diagnosing verification failure
struct node *reverse(struct node *xs)
/*@ requires take L = IntList(xs);

ensures take L_ = IntList(return); L_ == rev(L); @*/
{

struct node *last = NULL;
struct node *cur = xs;
while(1)
/*@ inv take L1 = IntList(last); take L2 = IntList(cur);

append(rev(L2), L1) == rev(L); @*/
{

if (cur == NULL) {
return last;

}
struct node *tmp = cur->tail;
cur->tail = last;
last = cur;
cur = tmp;

}
}

Current work & open problems 36 / 40

Diagnosing verification failure
struct node *reverse(struct node *xs)
/*@ requires take L = IntList(xs);

ensures take L_ = IntList(return); L_ == rev(L); @*/
{

struct node *last = NULL;
struct node *cur = xs;
while(1)
/*@ inv take L1 = IntList(last); take L2 = IntList(cur);

append(rev(L2), L1) == rev(L); @*/
{

if (cur == NULL) {
return last;

}
struct node *tmp = cur->tail;
cur->tail = last;
last = cur;
cur = tmp;

}
}

unproved constraint
append(rev(L), Nil {}) == rev(L)

counterexample
rev(L) [1i32]
append(rev(L), Nil {}) [2i32]
.

Current work & open problems 36 / 40

struct node *reverse(struct node *xs)
/*@ requires take L = IntList(xs);

ensures take L_ = IntList(return); L_ == rev(L); @*/
{

struct node *last = NULL;
struct node *cur = xs;
/*@ apply append_nil(rev(L)); @*/
while(1)
/*@ inv take L1 = IntList(last); take L2 = IntList(cur);

append(rev(L2), L1) == rev(L); @*/
{

if (cur == NULL) {
return last;

}
struct node *tmp = cur->tail;
cur->tail = last;
last = cur;
cur = tmp;

}
}
/*@ lemma append_nil (datatype list l1)

requires true;
ensures append(l1, Nil {}) == l1; @*/

Current work & open problems 37 / 40

struct node *reverse(struct node *xs)
/*@ requires take L = IntList(xs);

ensures take L_ = IntList(return); L_ == rev(L); @*/
{

struct node *last = NULL;
struct node *cur = xs;
/*@ apply append_nil(rev(L)); @*/
while(1)
/*@ inv take L1 = IntList(last); take L2 = IntList(cur);

append(rev(L2), L1) == rev(L); @*/
{

if (cur == NULL) {
/*@ unfold rev(Nil {}); @*/
/*@ unfold append(Nil {}, L1); @*/
return last;

}
struct node *tmp = cur->tail;
cur->tail = last;
last = cur;
cur = tmp;
/*@ unfold rev(L2); @*/
/*@ apply append_cons (rev (tl(L2)), hd(L2), L1); @*/

}
}Current work & open problems 38 / 40

Open questions for usable verification

Diagnosing and fixing verification failure is difficult.
Unclear whether lemmamechanism is good enough.

How can CN UI or type system help diagnose verification failure?

. . . help repair verification?

Can lemma application be reliably automated?

Are there better alternatives for CN/Rocq interaction?

. . . for partitioning the reasoning between decidable automation andmanual proof?

Current work & open problems 39 / 40

Plenty of open questions onmaking verification usable.

Future work
• verification usability and CN/Rocq interaction
• verify more pKVM code
• support (relaxed ARM systems) concurrency
• translation validation for ARM binary

CN + Cerberus (BSD 2‑clause): https://github.com/rems-project/cerberus
CN tutorial: https://github.com/rems-project/cn-tutorial

PostDoc
position

Current work & open problems 40 / 40

https://github.com/rems-project/cerberus
https://github.com/rems-project/cn-tutorial

	Introduction
	C semantics
	Type system design
	Validation
	Current work & open problems

